
Extended Goal Recognition Design with
First-Order Computation Tree Logic

Tsz-Chiu Au
chiu@unist.ac.kr

Ulsan National Institute of Science and Technology (UNIST)
South Korea

Goal Recognition Design (GRD)
• Goal recognition – an observer infers the goal of an agent

from a sequence of observations of agents’ actions.
• Goal recognition design1 – modify an environment to help

observers to recognize the goal of an agent.

21 Keren et al. Goal Recognition Design. AAAI 2014

$ % & ' (

�

�

�

�

�

$ % & ' (

�

�

�

�

�

$ % & ' (

�

�

�

�

�

$ % & ' (

�

�

�

�

�

Worst Case Distinctiveness (WCD)
• Worst case distinctiveness – a popular objective function for GRD

» The highest number of observations that an observer needs to observe
before it can be certain of the agent’s goal in the worst case.

33
Before redesign, WCD = 4

$ % & ' (

�

�

�

�

�

$ % & ' (

�

�

�

�

�

$ % & ' (

�

�

�

�

�

$ % & ' (

�

�

�

�

�

Minimizing WCD
• GRD aims to find a sequence of modifications to an environment

in order to minimize the WCD.

44
Before redesign, WCD = 4 After redesign, WCD = 0

Weakness of WCD
• When there exist two paths to two different goals but share a

long common prefix, it is difficult to reduce the WCD even if
other goals can be recognized easily.

5

g1 g2

g5 g6 g7 g8g3 g4

WCD1

𝑠!

Goal Condition
• Instead of asking exactly which goal an agent aims for, an

observer asks whether the agent aims for a goal condition
» e.g., one of any two goals but not any other goals
» It is weaker than recognizing a goal exactly, but still useful.

6

g1 g2

g5 g6 g7 g8g3 g4

WCD1

g1 g2

g5 g6 g7 g8g3 g4

WCD2

𝑠!𝑠!

Extended Goal Recognition Design (EGRD)

• Goal sequence – an agent can aim for more than one goal.

7
$ % & ' (

�

�

�

�

�

�

)

Our Contributions

• A framework of extended goal recognition design
» Use first-order computation tree logic (FO-CTL) to express

goal conditions
» The definition of WCD based on goal conditions.
» Finding WCD by model checking

• A graphical representation of FO-CTL sentences for
extended goal recognition
» A translation algorithm from goal query graphs to FO-CTL

sentences
• The EGRD search algorithm

» A caching mechanism for speeding up the search algorithm

8

First-Order Computation Tree Logic (FO-CTL)

• FO-CTL = first-order logic with path quantifiers (A and E)
and temporal operators (F, G, X, and U)
» A 𝜓 means 𝜓 holds on all paths

E 𝜓 means 𝜓 holds on at least one path
where 𝜓 is	either

F 𝜙 means 𝜙 eventually has to hold
G 𝜙 means 𝜙 always holds
X 𝜙 means 𝜙 holds at the next state
(𝜙" U 𝜙#) means 𝜙" has to hold at least until 𝜙# holds

» We assume no function symbol, and there is only one
predicate symbol Goal(g)
§ The predicate symbol Goal will be omitted.

• For example,
𝜙unique = ∃𝑥 AF 𝑥 ∧ ∀𝑥! 𝑥! ≠ 𝑥 ⇒ AG ¬𝑥!

which checks whether a goal 𝑔 exists such that an agent
must eventually achieve 𝑔 while the agent will not
achieve any other goal after achieving 𝑔.

9

𝑥 = 𝑔! 𝑥 = 𝑔!
𝑥 = 𝑔!

𝜙unique is true

𝑠!

𝑠$

The WCD of a Goal Condition

• The WCD of a goal condition 𝜙 is

max
%∈''()

min
(*∈)+(%)

𝑑𝑖𝑠𝑡(𝑠,, 𝑠-)

where
» 𝑃./0 is the set of all legal paths
» 𝑆1(𝑝) is the set of states on a legal path
𝑝 ∈ 𝑃./0 such that 𝜙 is	true	in	these	states

» 𝑑𝑖𝑠𝑡(𝑠,, 𝑠-) is the distance between 𝑠- and
the initial state 𝑠,

10

𝑥 = 𝑔! 𝑥 = 𝑔!

𝜙unique is true

𝑑𝑖𝑠𝑡(𝑠!, 𝑠$)

𝑠$

𝑠!

𝑥 = 𝑔!

−1

()

$*

$)

Finding WCD by Model Checking
• Given a goal condition 𝜙, evaluate EF 𝜙 at the initial state 𝑠, by model

checking.
• For example,

EF 𝜙unique = EF ∃𝑥 AF 𝑥 ∧ ∀𝑥! 𝑥! ≠ 𝑥 ⇒ AG ¬𝑥!

• Attach a cost function to each node in a sentence.
» e.g, the cost function of Node 1 is 𝑚𝑎𝑥, and the cost function of Node 2 is
𝑑𝑖𝑠𝑡(𝑠!, 𝑠$)

• The costs, along with the truth values, are propagated to the root node
during the execution of the model checking algorithm.

11

Goal Query Graph (GQG)
• Goal query graph – a graphical representation of goal conditions
• For example, the GQG of ∃𝑥2∃𝑥3 AF 𝑥2 ∧ AX AF 𝑥3 is

• Directed acyclic graph:
» 3 vertex types: state vertices, nil vertices, and choice vertices
» 5 edge types: AP edges, EP edges, AX edges, EX edges, and choice edges

• State vertices can have state conditions (e.g., (𝑥3∨ ¬𝑥2))
• AP edges and EP edges can have edge conditions (e.g., XA = ∀𝑥 ¬𝑥)
• Choice vertices and choice edges:

12(QG

(QG

Translating GQGs into FO-CTL Sentences

13

• A depth-first search in the goal query graph.
» The FO-CTL sentence is constructed in a bottom-up fashion.
» Each vertex/edge type has its own rule for translation.
» Insert existential qualifiers for the free variables.
» Optimization techniques for shortening the sentence.

• Running time: 𝑂(𝑉 + 𝐸)

The EGRD Search Algorithm with Caches

• A depth-limited, best-first search
» Store unexpanded transition systems in an open list.
» Repeat the following steps until the open list is empty or

the time limit
§ Remove a transition system 𝑀 from an open list
§ Use a model checking algorithm to evaluate 𝑀 and

compute WCD.
§ If the evaluation is true and the WCD is lower than

the best WCD
› set this transition system as the best solution.

§ If the search depth of 𝑀 is less than a threshold
› apply modifications to 𝑀 to insert the generated

models into the open list.
» Return the best solution

14

The Caching Mechanism

• Caching mechanism – store the evaluation results of
the recursive calls in the model checking algorithm in
a cache.
» Reuse the results in subsequent runs of the model checking

algorithm.
» Need a succinct encoding of transition systems’ states.

15

Empirical Evaluation

16

• The running times increase as the number of goals increases.
• The caching mechanism can greatly reduce the running time of

the EGRD search algorithm.

• The goal query graph:

Summary and Future Work

17

• Extended goal recognition design
» Weaker goal conditions
» Agents can aim for a sequence of goals

• Express goal conditions in FO-CTL
» Finding WCDs by model checking
» Goal query graphs

• Caching mechanism to speed up the EGRD search
• Future work: Partial observability

• The source code with additional examples:
https://github.com/chiuau/AAAI22-egrd

https://github.com/chiuau/AAAI22-egrd

Thank you!

18

