
A Dynamic Programming Algorithm for Grid-based Formation
Planning of Multiple Vehicles

Tsz-Chiu Au1

Abstract— A common operation in multirobot systems is to
generate a motion plan for multiple robots such that the robots
can move in formation to achieve some desired effects. For
example, in autonomous parking lots, a group of vehicles can
be asked to move to another location when they block another
vehicle that needs to leave the parking lot. In this paper, we
present a novel grid-based planning approach for motion plan-
ning that minimizes the makespan of moving multiple vehicles
from one location to another in a safe manner. Unlike most
existing multirobot planning algorithms, our algorithm uses
dynamic programming to compute a nearly-optimal motion
plan for a large group of vehicles in polynomial time with
the help of a given set of intermediate vehicle patterns. Our
experimental results show that our algorithm is much faster
than an exact algorithm but does not increase the minimum
makespans tremendously.

I. INTRODUCTION

In many multirobot systems, robots have to move in
formation as quickly as possible while avoiding collisions.
A typical example is drone light shows, in which a group
of drones displays a sequence of light patterns in the sky
by changing from one drone pattern to another repeatedly.
There has been work on controlling a team of robots to
form and maintain a robot pattern while the robots move
together [1], [2]. Some works have considered the multi-UAV
formation reconfiguration problem in which the control rules
can transform the initial formation configuration into a final
configuration [3]. However, long-term planning is needed
for more complicated formation reconfiguration. In general,
motion planning is NP-hard [4], [5]. There is no efficient
algorithm to solve the multirobot planning problem unless
we make some assumptions to simplify the problem. For
example, Yu and LaValle presented an optimal formation
control on graphs in which agents take exactly one time-
step to move from one vertex to an adjacent vertex [6], [7].
However, the general case remains difficult.

In this paper, we present a new approach that relies on a
given set of intermediate robot patterns to speed up the plan-
ning process. This approach is suitable for situations in which
the intermediate robot patterns are easily obtainable. The idea
of this approach stems from our study of autonomous parking
lots (APLs), a type of high-density parking (HDP) [8], [9],
[10], [11]. Unlike conventional parking methods that reserve
more than half of the space for driveways and sidewalks,
HDP reduces the size of driveways by putting vehicles close
to each other. An autonomous vehicle in the parking lot can
be asked to move autonomously if it blocks another vehicle

1Department of Computer Science and Engineering, Ulsan National In-
stitute of Science and Technology, South Korea. chiu@unist.ac.kr

Fig. 1: Move a block of ve-
hicles to the right in an au-
tonomous parking lot.

Fig. 2: Local motion plans.

that needs to leave the parking lot. One basic operation
in APLs is to relocate a block of vehicles (See Fig. 1).
The efficiency of APLs can be improved by minimizing the
makespan (i.e., the length) of the motion plan so that more
vehicles can get in or out of the parking lot.

The task of minimizing the makespan is nontrivial since
each vehicle can have more than one local plan generated
by the local planner, and our algorithm has to choose the
best set of local plans such that the makespan of the entire
multi-vehicle motion plan can be minimized. For example,
in Fig 2, each vehicle has two feasible local plans. If the
vehicle ν1 chooses π2 and ν2 chooses π3, ν2 has to delay its
execution of π3 since π2 and π3 cannot be overlapped during
execution. However, if ν1 chooses π1 instead, both π1 and
π3 can be executed simultaneously, and the makespan can be
reduced. Fig. 2 highlights the fact that ad hoc execution of
local plans (i.e., a vehicle chooses a local plan right before
the execution) can fail to minimize the makespan. A planning
algorithm is needed to avoid overlapping local motion plans
such that the makespan can be shortened.

Another way to reduce the makespan is to choose local
plans in which vehicles can move faster. However, vehicles
in APLs are close to each other, and hence it is dangerous
to drive at high speed. We define a safety buffer around a
vehicle such that no other vehicle should present at any time
(see Fig. 3). The safety buffer is dynamic since the shape of
a safety buffer depends on the current speed and the current
heading of the vehicle. Typically, the shape depends on the
amount of space a vehicle needs for an emergency stop
in the current driving direction. We utilize the reservation
system in autonomous intersection management (AIM) for
handling safety buffers [12]. Our grid-based motion planning
algorithm integrates the reservation system into the planning
algorithm such that the safety constraint can be enforced.

In summary, the contributions of this paper are:

• We define the formation planning problem for multiple
vehicles given a sequence of intermediate patterns.

• We define a grid-based reservation system for handling
vehicles’ dynamic safety buffers for emergency stops.

• We present a polynomial time algorithm for solving the
formation planning problem with respect to vehicles’
safety buffers.

• We conducted experiments in simulation to compare our
algorithm with an optimal graph-search algorithm.

This paper is organized as follows. After the related
work section in Sec. II, we define our vehicle formation
planning problem in Sec. III, and then present our algorithm
in Sec. IV. Finally, we present our experimental results in
Sec. V and conclude this paper in Sec. VI.

II. RELATED WORK

Many existing works on multirobot planning specifically
focus on controlling a team of robots to maintain a pattern
(e.g., [1], [2]). Wei et al. presented a set of integer pro-
gramming and dynamic programming models for scheduling
longitudinal trajectories of a chain of vehicles based on
space-time lattices [13]. Our work can be considered as a
generalization of longitudinal car-following models to 2D
and higher dimensions. Leader-follower models are popular
models for formation control (e.g., [14], [15]). But these
works typically aim for maintaining a formation by control
rules and do not optimize for the makespan. The multi-
UAV formation reconfiguration is the task of transforming an
initial formation configuration into a final configuration [3].
Our work belongs to this line of research, but we rely on the
assumption that the sequence of intermediate formations is
given, which is not found in the literature.

A feature of our approach is the discretization of space
and time. This feature is similar to occupancy grids [16],
but our work is closely related to the grid-based reservation
system in AIM [12], [17]. Wu et al. proposed a data
structure called stacked reservation grid (SRG) for motion
planning [18]. Lattice-based motion planners go one step
further to discretize the state of robots [19], [20].

Our bilevel optimization is similar to hierarchical mo-
tion planning. For example, Vukosavljev et al. introduced
hierarchical motion primitives to solve the motion planning
problem for a large collection of agents in a modular
framework for motion planning [21], [22]. Grymin et al.
presented a hierarchical approach for primitive-based motion
planning and control of autonomous vehicles using a library
of pre-specified motion primitives [23]. Currently, our system
has a two-level hierarchy only, but it is possible to extend
the hierarchy for more elaborated scenarios (e.g., coalition
planning for several different groups of vehicles).

III. VEHICLE FORMATION PLANNING PROBLEM

We shall consider motion planning for a finite set V =
{ν1, ν2, . . . , νn} of vehicles in a finite 2D workspace. We
discretize the workspace into a Nx × Ny grid, where
{C1, C2, . . . , CNx·Ny

} is the set of all cells in the grid. We
discretize the timeline into a sequence of time intervals:
T0, T1, . . . , Tk where Tk is the horizon, Ti = [ti, ti+1)
and ti = i × D for a given constant D and 0 ≤ i < k.

Safety Buffer: Reserved space around a
vehicle for collision avoidance

Static Safety Buffer Dynamic Safety Buffer

velocity = 0 km/h velocity = 30 km/h

Stopping
Distance

Enough room for emergency stops
even moving at a high speed.

Fig. 3: Dynamic safety
buffer.

Fig. 4: A formation planning
graph.

For simplicity, we shall assume D = 1, such that ti = i.
Following the notations in AIM [12], [24], the space-time is
discretized into a set of tiles, each of which is a pair (Ci, Tj).
A tile is occupied by a vehicle if the tile intersects with the
vehicles’ dynamic safety buffer, as defined below, during the
execution of a motion plan for the vehicle. In our algorithm,
collision avoidance is achieved by preventing two vehicles
from occupying the same tile.

Let ρ = (x, y, θ) be a pose of a vehicle ν, where (x, y)
is the coordinate of the center of ν in the workspace and θ
is the heading of ν. Following the simple car model in [25],
let (x, y, θ, v, ϕ) be a configuration of a vehicle ν, where
(x, y, θ) is a pose of ν, v is the velocity of ν, and ϕ is the
steering angle.

Each vehicle can have a different size and shape. More-
over, each vehicle ν has a static safety buffer ∂0(ν), which is
a region slightly larger than the shape of the vehicle. ∂0(ν) is
the safety buffer when a vehicle is stopped. A dynamic safety
buffer ∂(ν, s) is the one that depends on the configuration
s = (x, y, θ, v, ϕ) of ν. Typically, ∂(ν, s) is larger than ∂0(ν)
when v > 0 since a moving car needs more space for safety.
Thus, a dynamic safety buffer is an extension of the static
safety buffer such that the vehicle can have enough space
to make an emergency stop (e.g., the blue region in Fig. 3).
A dynamic safety buffer can be obtained by increasing the
length of the static safety buffer in the heading direction and
fanning out slightly in the direction of the angular velocity
so that the vehicle can stop inside the dynamic safety buffer
when it is asked to stop immediately. In this paper, all safety
buffers are dynamic unless we state otherwise.

A local motion plan π for a vehicle ν is a sequence of con-
trol commands for controlling ν to move along a trajectory.
Given two poses ρ1 and ρ2 for ν, there is a local planner for
ν that can generate a finite set LocalPlanν(ρ1, ρ2) of distinct
local motion plans quickly. That is, LocalPlanν(ρ1, ρ2) =
{π1, π2, . . . , πk} such that ν can change its pose from ρ1
to ρ2 using any one of these local motion plans, assuming
the velocity of ν at ρ1 and ρ2 are zero. The footprint
of a local motion plan π is the set Tile(π) of tiles that
intersects with the safety buffer of ν when ν traverses on the
trajectory during the execution of π. For collision avoidance,
the footprints of two local motion plans for two different
vehicles cannot overlap, even during an emergency stop.

Given a set V of n vehicles, a formation F for V is a
set {ρ1, ρ2, . . . , ρn} of poses, where ρi is a pose for νi ∈ V .
Given two formations F1 = {ρ1i }1≤i≤n and F2 = {ρ2i }1≤i≤n

for V = {νi}1≤i≤n where ρ1i and ρ2i are the poses for νi, a

formation plan for F1 and F2 is Π = {πi}1≤i≤n where πi

is a local motion plan such that πi ∈ LocalPlanνi(ρ
1
i , ρ

2
i),

for all νi ∈ V . However, we cannot directly execute a
formation plan to transform one formation into another since
the footprints of some of the local motion plans in Π may
cross each other (see Fig. 2). Hence, some of the motion
plans have to be delayed so that the footprints of the two
vehicles do not overlap. A schedule for Π = {πi}1≤i≤n is
Γ = {ti}1≤i≤n, where ti is the time delay of the execution
of πi for 1 ≤ i ≤ n. Before ti, νi remains at its pose ρi. Let
Tile(πi, ti) be the footprint πi after delaying its execution
for time ti relative to the start time t0 of the execution of Π
(i.e., πi will be executed at time t0 + ti). A schedule Γ for
Π is valid if and only if Tile(πi1 , ti1) ∩ Tile(πi2 , ti2) = ∅
for 1 ≤ i1 < i2 ≤ n. We call (Π,Γ) a timed formation plan
for V , where Γ is a valid schedule for Π. The makespan of
(Π,Γ) is makespan(Π,Γ) = max1≤i≤n{ti + |πi|}, which
is the time difference between t0 and the end time of the
last action execution, where |πi| denotes the length of the
execution of the plan πi.

Given a sequence ⟨F1, F2, . . . , Fm⟩ of formations for a
set V of n vehicles, a meta-formation plan is Πmeta =
{(Πj ,Γj)}1≤j≤m−1, where (Πj ,Γj) is a timed formation
plan that transforms Fj to Fj+1 for 1 ≤ j ≤ m − 1.
Πmeta also needs a meta-schedule Γmeta = ⟨tmeta

j ⟩1≤j≤m−1

to determine when a timed formation plan in Πmeta should
start. Γmeta is valid if and only if the footprints of all
local motion plans in the timed formation plan (Πj ,Γj) do
not overlap with the footprints of all local motion plans
in (Πj+1,Γj+1) for 1 ≤ j ≤ m − 2. More precisely,
Γmeta is valid if and only if Tile(πi1 , ti1) ∩ Tile(πi2 , ti2) =
∅ for every πi1 ∈ Πj and every πi2 ∈ Πj+1, where
1 ≤ j ≤ m − 2. We call (Πmeta,Γmeta) a timed meta-
formation plan for V given ⟨F1, F2, . . . , Fm⟩. The makespan
of (Πmeta,Γmeta) is makespan(Πmeta,Γmeta) = tmeta

m−1 +
makespan(Πm−1,Γm−1).

In summary, the problem statement of our vehicle forma-
tion planning problem is defined as follows:

Definition 1: Given
1) a set V = {ν1, ν2, . . . νn} of vehicles,
2) a sequence ⟨F1, F2, . . . , Fm⟩ of formations where Fj =

{ρji}1≤i≤n in which ρji is the pose of νi in Fj , for 1 ≤
j ≤ m, and

3) a set LocalPlanνi
(ρji , ρ

j+1
i) of local motion plans for all

νi ∈ V and 1 ≤ j ≤ m− 1,
find a timed meta-formation plan (Πmeta,Γmeta) such that
makespan(Πmeta,Γmeta) is minimized, where
1) Γmeta = ⟨tmeta

j ⟩1≤j≤m−1 is a valid schedule of the meta-
formation plan Πmeta, and

2) Πmeta = {(Πj ,Γj)}1≤j≤m−1, where Γj = {tji}1≤i≤n is
a valid schedule of a formation plan Πj = {πj

i }1≤i≤n,
for some local motion plan πj

i ∈ LocalPlanνi
(ρji , ρ

j+1
i)

IV. FORMATION PLANNING ALGORITHMS

According to Definition 1, the solution to the formation
planning problem hinges on choosing 1) a local motion
plan πj

i from the set of all possible local motion plans

generated by the local planner for νi, for each pose in every
formation transformation; 2) a valid schedule Γj for every
formation plan Πj constructed by the chosen local motion
plans; and 3) a valid meta-schedule Γmeta. In this section,
we present a bilevel optimization algorithm in which 1) the
lower level minimizes the makespan of the timed formation
plan for each transformation of formations by choosing the
local motion plans for every vehicle, and 2) the upper level
minimizes the makespan of the timed meta-formation plan.
It turns out that both the lower level optimization and the
upper local optimization can be solved by the same dynamic
programming algorithm that returns a nearly-optimal solution
in polynomial time.

A. Formation Planning Graphs

The lower level optimization aims to address this prob-
lem: given two formations F1 and F2 for V and Πi =
LocalPlanνi(ρ

1
i , ρ

2
i) where ρ1i ∈ F1 and ρ2i ∈ F2 for all

νi ∈ V , find 1) a set {πi}1≤i≤n of local motion plans
where πi ∈ Πi for all νi ∈ V , and 2) a valid schedule
Γ = {ti}1≤i≤n such that makespan(Π,Γ) is minimized.
First, we formulate this problem as a graph search problem
as follows. We construct an undirected graph (V, E′) by
having a vertex ν for each vehicle ν ∈ V and inserting an
undirected edge into E′ for each pair (ν1, ν2) of vehicles if
the footprints of ν1 and ν2 can potentially overlap if they
are executed simultaneously (i.e., there exist π1 ∈ Π1 and
π2 ∈ Π2 such that Tile(π1, 0) ∩ Tile(π2, 0) ̸= ∅). This
condition can be checked by enumerating all pairs of plans
in Π1 × Π2. Then we convert the undirected graph (V, E′)
into a directed acyclic graph (V, E) as follows: for each
vertex ν ∈ V whose in-degree is zero, we conduct a depth-
first search in (V, E′) using ν as the root. When the depth-
first search visits a child node ν2 of ν1 for the first time, it
should check whether π1 ∈ Π1 and π2 ∈ Π2 such that π2

can be possibly executed after π1. This check can be done
by checking whether there exists a start time t ∈ [0, |π1|) of
π2 such that the footprints of π1 and π2 does not overlap
when π1 starts at time 0 and π2 starts at time t. If this check
fails, the depth-first search backtracks at ν1. If the depth-first
search reaches all vertices in V and there is no cycle (i.e.,
no vertex is visited twice), we insert a directed edge (ν, ν′)
into E′ whenever ν is a parent of ν′ during the search. If the
search fails to reach all vertices or a cycle is found, we repeat
the depth-first search for another vertex until we construct
(V, E) that is a connected, directed acyclic graph (DAG). If
no connected DAGs can be constructed, our algorithm fails
since our algorithm can only work with connected DAGs.
The reason is that the direction of a directed edge (ν, ν′)
denotes the requirement that the chosen local motion plan
for ν has to be executed before the chosen local motion plan
for ν′. This ordering is inconsistent if the graph is cyclic.

Each vertex νi in V is associated with a set Li =
{lj}1≤j≤|Πi| of non-negative numbers, where lj = |πj | is
the length of the local motion plan πj for every πj ∈ Πi.
Likewise, each edge (νi1 , νi2) in E is associated with a table
∆i1,i2 of non-negative numbers, where δj1,j2 ∈ ∆i1,i2 is the

minimum time delay of the local motion plan πj2 ∈ Πi2 after
the execution of the local motion plan πj1 ∈ Πi1 such that the
footprints of πj1 and πj2 do not overlap (i.e., Tile(πj1 , 0) ∩
Tile(πj2 , δj1,j2) = ∅ and Tile(πj1 , 0) ∩ Tile(πj2 , t) ̸= ∅ for
0 ≤ t < δj1,j2). We can compute δj1,j2 by increasing δj1,j2
from 0 to |πj1 | until the footprints of πj1 and πj2 does not
overlap. Note that the size of ∆i1,i2 is |Πi1 | × |Πi2 |.

Let (V, E,L,∆∆, νroot) be a formation planning graph,
where L = {Li}1≤i≤n, ∆∆ = {∆i1,i2}(νi1 ,νi2)∈E , and
νroot ∈ V is the root of the DAG (V, E). A solution to a for-
mation planning graph is a set Πsol = {πji}1≤i≤n and πji

∈Πi

of local motion plans. Note that there is one local motion
plan πji from each Πi in Πsol. In the rest of this paper, we
assume a formation planning graph is given and focus on
minimizing the makespan of the given graph.

B. Solution’s Makespan

Given a solution Πsol, the formation planning
graph can be reduced to (V, E,L′,∆∆′, νroot),
where L′ = {lji}1≤i≤n and lji∈Li and πji

∈Πsol , and
∆∆′ = {δji1 ,ji2 }(νi1

,νi2
)∈E and δji1 ,ji2

∈∆i1,i2
and πji1

,πji2
∈Πsol .

For simplicity, let λi = lji and ϑi1,i2 = δji1 ,ji2 . Thus, in
the reduced formation planning graph, there is one number
λi for each vertex νi, and there is one number ϑi1,i2 for
each edge (νi1 , νi2).

Let τ = ⟨νi1 , νi2 , . . . , νih⟩ be a path that connects the root
νroot = νi1 to νih in a reduced formation planning graph. The
lower bound of the minimum delay of τ is

D(τ) =
∑

1≤k≤h−1

ϑik,ik+1
.

If τ is a critical path (i.e., all chosen local motion plans on
τ start at the lowerest possible delay), D(τ) is the actual
minimum delay of the execution of the chosen local motion
plan πjih

∈ Πsol for νih . In other words, the time delay of
πjih

in a valid schedule Γ∗ is at least D(τ). Otherwise, it is
just a lower bound of the minimum delay.2

A schedule Γ∗ = {t∗i }1≤i≤n is optimal if and only if
it is valid and there does not exist another valid schedule
Γ = {ti}1≤i≤n such that ti < t∗i for some νi ∈ V . The
following theorem states that t∗i = maxτ∈Υi

D(τ).
Theorem 1: Given a solution Πsol to a formation planning

graph (V, E,L,∆∆, νroot), the optimal valid schedule is

Γ∗ = {t∗i }1≤i≤n (1)

where t∗i = maxτ∈Υi
D(τ) and Υi is the set of all paths

from νroot to νi.
Sketch of Proof. Without loss of generality, the indices of
the vertices are ordered by a topological sort of the DAG
(V, E), and let ν1 = νroot. Since the length of the path to ν1
is zero, t∗1 = 0 which is optimal for π1 ∈ Πsol. Suppose t∗i
is optimal for 1 ≤ i ≤ k. Let t∗k+1 = maxτ∈Υk+1

D(τ) =

2D(τ) is the lower bound of the minimum delay of πjih
for the given

formation planning graph only. When more than one formation planning
graph can be constructed for a given set of vehicles, it is possible that
D(τ) for one formation planning graph is smaller than D(τ) for another
formation planning graph.

maxi′∈parent(k+1){ϑi′,i + t∗i′}, where parent(k + 1) is the
set of indexes of the parents of νk+1 in the DAG. Since all
indexes in parent(k + 1) are less than or equal to k, t∗i′ are
optimal by the induction hypothesis. Therefore, t∗k+1 is also
optimal. By induction, Γ∗ is optimal. 2

The above proof shows that t∗i can be computed recur-
sively by this equation:

t∗i = max
i′∈parent(i)

{ϑi′,i + t∗i′}, (2)

for 1 < i ≤ n and t∗1 = 0. Then we can use this equation
to compute makespan(Πsol,Γ∗) = max1≤i≤n{λi + t∗i }
recursively.

C. Optimal Solution

An optimal solution Π̄sol of a formation planning graph
(V, E,L,∆∆, νroot) is one that minimizes the makespan: for
all Πsol, makespan(Πsol,Γ∗) ≥ makespan(Π̄sol, Γ̄∗), where
Γ∗ and Γ̄∗ are the optimal schedules for Πsol and Π̄sol,
respectively. More precisely, the minimum makespan can be
computed by the following equation:

min
Πsol

{
makespan(Πsol,Γ∗)

}
= min

j1∈Π1,...,jn∈Πn

{
max
1≤i≤n

{lji + t∗i }
}
,

(3)

where ji ∈ Πi is a shorthand for πji ∈ Πi, for 1 ≤ i ≤
n. However, this equation requires an enumeration of all
possible solutions and then evaluates the makespan of each
solution via Eq. 2. This brute-force approach is quite slow.
Therefore, we want to factorize the equation to simplify the
calculation. First of all, we expand the max term using Eq. 1:

min
j1∈Π1,...,jn∈Πn

{
max
1≤i≤n

{lji + t∗i }
}

= min
j1∈Π1,...,jn∈Πn

{
max
1≤i≤n

{
lji + max

τ∈Υi

D(τ)

}}
= min

j1∈Π1,...,jn∈Πn

{
max
1≤i≤n

max
τ∈Υi

{lji +D(τ)}
} (4)

where Υi be the set of all paths from νroot to νi. The max
terms refer to an enumeration of all possible paths starting
from νroot in the graph. This enumeration provides some
opportunities for factorizing the equation. For example,
the minimum makespan of the formation planning graph
in Fig. 4 is minj1∈Π1,j2∈Π2,j3∈Π3,j4∈Π4

{max{lj1 , (δj1,j2 +
lj2), (δj1,j3 + lj3), (δj1,j2 + δj2,j3 + lj3), (δj1,j2 + δj2,j4 +
lj4), (δj1,j2 + δj2,j3 + δj3,j4 + lj4), (δj1,j3 + δj3,j4 + lj4)}},
where each term refers to one path starting from the root
ν1 in the graph. We factorize the common prefixes of these
terms: minj1∈Π1,j2∈Π2,j3∈Π3,j4∈Π4

{max{lj1 , (δj1,j2 +
max{lj2 , (δj2,j3 + max{lj3 , δj3,j4 + lj4}, (δj2,j4 +
lj4)}, δj1,j3 + max{lj3 , (δj3,j4 + lj4)}}}. Then we can
push some of the min operators inside the max terms:
minj1∈Π1{max{lj1 ,minj3∈Π3,j4∈Π4{max{minj2∈Π2{(δj1,j2
+ max{lj2 , (δj2,j3 + max{lj3 , (δj3,j4 + lj4)}, (δj2,j4 +
lj4)}}, δj1,j3 + max{lj3 , (δj3,j4 + lj4)}}}}}. Compared
to Eq. 3, this equation is much faster in calculating the
minimum makespan. However, this equation has two

drawbacks: 1) some of the min operators cannot be pushed
deep inside the min terms, and 2) it is hard to write down
an equation to describe where we should insert the min
operators in the max terms. In fact, when most paths in the
graph are intertwined, the min operators cannot be pushed
inside the min terms, and therefore the running time of the
calculation remains exponential to the number of vertices.

D. Dynamic Programming

It would be ideal if we could push all min
operators closer to the terms that use them. For
example, minj1∈Π1

{max{lj1 ,minj2∈Π2
{(δj1,j2 +

max{lj2 ,minj3∈Π3
{(δj2,j3 + max{lj3 ,minj4∈Π4

{(δj3,j4 +
lj4)}}},minj4∈Π4{(δj2,j4 + lj4)}}},minj3∈Π3{δj1,j3 +
max{lj3 ,minj4∈Π4{(δj3,j4 + lj4)}}}}}. But this calculation
is incorrect since this allows a vehicle to choose different
local motion plans for different min operators. For example,
the optimal value of j4 in the term minj4∈Π4

{(δj2,j4 + lj4)}
can be different from the the optimal value of j4 in
minj4∈Π4{(δj3,j4 + lj4)}. But ν4 cannot choose two
different local motion plans in Π4 simultaneously.

This equation, however, is not totally useless. In fact, the
result of this calculation is a lower bound of the actual
minimum makespan since this equation addresses a relaxed
problem in which the constraint that a vehicle can choose one
and only one local motion plan is relaxed. If we randomly
select one of the chosen local motion plans during the
calculation of this equation, the quality of the solution is
suboptimal but not too far from the optimal solution in many
formation planning graphs according to our experiments.
More importantly, this equation can be computed in poly-
nomial time by dynamic programming, making it a practical
solution to our formation planning problem.

In general, the recursive equation for this calculation is:

P (i1, i2, ji1) =

min
ji2∈Πi2

{
δji1 ,ji2

+max

{
lji2 , max

i3∈children(i2)
{P (i2, i3, ji2)}

}}
,

(5)

where i2 ∈ children(i1) (i.e., νi2 is a child of νi1). In this
calculation, we have to add a dummy vertex ν0 and a dummy
edge (ν0, ν1) before the root vertex νroot = ν1 in the graph.
ν0 has one local motion plan πj0 of zero length, such that
δj0,j1 = 0 for all πj1 ∈ Π1. Then the calculation starts
with P (0, 1, 1), and the result is a lower bound of the actual
minimum makespan.

Based on Eq. 5, we devised Algorithm 1 to calculate
a lower bound of the minimum makespan of a formation
planning graph by dynamic programming. The running time
of Algorithm 1 is O(H × n2) where H = max1≤i≤n |Πi|,
assuming the maximum number of local plans for a vehicle
and the number of children vertices of a vertex in a graph
are constants. To construct a solution Πsol, we can modify
the algorithm to keep track of the chosen value ji2 ∈ Πi2 in
the min operator in Eq. 5. Let Π′

i2
be the set of all πji2

for
every νi2 ∈ V that contributes to the result of Algorithm 1.
We can construct a solution Πsol by randomly choosing a

Algorithm 1 Calculate the lower bound of the minimum
makespan by dynamic programming.

1: procedure CalcMinMakespanLB(V, E,L,∆∆, νroot)
2: Conduct a topological sort of (V, E) and set the vertex

indices in the ascending order.
3: Add ν0 to V ; Add (ν0, ν1) to E; Add L0 = {0} to L;

Add ∆0,1 = {δ0,j1 = 0}πj1
∈Π1 to ∆∆. Let Π0 = {π1}

4: Create a n × n × H table P , where H is the maximum
number of local motion plans for a vehicle.

5: for i1 = n− 1 down to 0 do
6: for all πji1

∈ Πi1 do
7: for all i2 ∈ children(i1) do
8: Compute P (i1, i2, ji1) by Eq. 5
9: return P (0, 1, 1)

local motion plan from Π′
i2

for every νi2 ∈ V . Then we
can use Eq. 2 to compute the corresponding schedule Γ∗.
Note that makespan(Πsol,Γ∗) differs from the lower bound
of the minimum makespan returned by Algorithm 1. In fact,
makespan(Πsol,Γ∗) can be larger than the actual minimum
makespan since the choice of local motion plans from Π′

i2
can be suboptimal.

E. The Upper Level Optimization

The upper level optimization aims to find an
optimal timed meta-formation plan (Πmeta,Γmeta)
for a sequence ⟨F1, F2, . . . , Fm⟩ of formations such
that makespan(Πmeta,Γmeta) is minimized. We can
model this problem as a formation planning graph
(V, E,L,∆∆, νroot) in which 1) V = {F1, F2, . . . , Fm},
2) E = {(Fi, Fi+1)}1≤i<m, 3) L = {Li}1≤i≤m where
Li = {makespan(Πsol

i ,Γ∗
i)} where Πsol

i is the solution
of Algorithm 1 for the formation planning graph for Fi

and Fi+1, for 1 ≤ i < m, and 4) ∆∆ = {∆i,i+1}1≤i<m

where ∆i,i+1 = {δi,i+1
1,1 } and δi,i+1

1,1 is the minimum time
delay between Πsol

i and Πsol
i+1, and 5) νroot = F1. Then we

can use Algorithm 1 to compute a nearly optimal timed
meta-formation plan (Πmeta,Γmeta). The running time of the
algorithm is O(m2) since there is only one timed formation
plan for each pair of adjacent formations. Together with the
lower level optimization, our approach’s total running time
is O(m×H × n2 +m2).

F. Automatic Generation of Intermediate Formations

Our approach relies on the availability of a sequence of
intermediate formations. In some applications, it is easy to
identify the intermediate formations that are helpful. For
example, in autonomous parking lots, we can precompute
a set of locations based on the geometrical shape of a
parking lot and force vehicles to go through these locations
in formation. However, in drone light shows, the intermediate
formations for complicated formation transformation may
not be obvious. In the latter situations, we can gener-
ate intermediate formations automatically using sampling-
based motion planning algorithms such as RRT [26], [27],
RRT* [28], and PRM [29]. If we keep the shape of the
formation the same in all intermediate formations, we can
consider all robots in a formation as one robot and use

Algorithm 1 as the local planner for these sampling-based
algorithms. Obviously, the sequence of intermediate forma-
tions generated by this method may not be optimal since
we can do better by allowing formations to have different
shapes. In the future, we will study formation shapeshifting
when applying sampling-based motion planning algorithms
for the automatic generation of intermediate formations.

V. EXPERIMENTAL EVALUATION

We conducted two experiments to evaluate our approach.
In Experiment 1, we compared Algorithm 1 to a graph-
search algorithm that returns a motion plan with minimum
makespan. In Experiment 2, we tested our algorithm in
confined environments such as autonomous parking lots. Our
experiments were conducted in a simulator we developed for
traffic simulation. Both the simulator and the algorithms were
implemented in C++23 with the SDL2 library.

In Experiment 1, we developed a graph-search algo-
rithm that returns an optimal formation plan with minimal
makespan. The graph-search algorithm is based on Eq. 4 with
some tricks to push some but not all min operators inside
the max terms. It is a complete algorithm that guarantees
to return an optimal solution that is the same as a brute-
force search’s solution, but the algorithm is around three
times faster than a naive implementation of a brute-force
search. Unfortunately, the running time of the graph-search
algorithm remains exponential to the number of vehicles.
Due to space limitation, we cannot present the details of
the graph-search algorithm. For more information, please
examine the source code of the graph-search algorithm and
the brute-force search we released on GitHub.3

We considered two different types of formation: rectan-
gular grids and triangular grids. We generated formation
pairs by the following steps. For each formation of size
n, we systematically put n vehicles in a grid such that
they are close to each other. The vehicles’ headings are the
same. After generating an initial formation, we duplicated
the formation at a random location in the workspace with
a different orientation to generate the final formation. Then
we check whether there are local motion plans for every
vehicle to move from the location in the initial formation to
the location in the final formation. If there is a vehicle that
has no local motion plan, we reject the pair of initial and
final formations and generate another pair. In the end, the
number of local motion plans for each vehicle is either 1
or 2. We randomly generated 100 formation pairs generated
according to the above procedure.

Second, we converted the formation pairs into formation
planning graphs based on a discretization of the workspace
and the timeline. The size of a cell in a grid is 1m × 1m,
and the length of the time interval of a tile is 0.04s. The size
of the static safety buffer of all vehicles is 6m×3m, but the
size of the dynamic safety buffer increases with the vehicle’s
speed. We ran Algorithm 1 and the graph-search algorithm
with every formation graph and measured the running times

3https://github.com/chiuau/multiplan

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40 50

M
ak

es
pa

n
(s

)

Number of Vehicles

Graph Search
Dynamic Programming

Fig. 5: Average makespan vs. the number of vehicles

0
5

10
15
20
25
30
35
40

0 10 20 30 40 50

Ru
nn

in
g

Ti
m

e
(s

)

Number of Vehicles

Graph Search
Dynamic Programming

Fig. 6: Running time vs. the number of vehicles

TABLE I: The average makespans in Experiment 2.

Right-Shift Left-Turn Reverse
Avg. makespan (in sec.) 7.13 11.57 35.47

of the algorithms and the makespans of the formation plans.
The results are shown in Fig 5 and Fig 6.

As can be seen in Fig. 5, the makespans of the formation
plans generated by both algorithms are mostly the same. It
means that even though Algorithm 1 cannot guarantee to
find an optimal solution, it often returned an optimal solution
when n, the number of vehicles, is small. When n is larger
than 30, the graph-search algorithm took too much time to
find an optimal solution (see Fig. 6), but Algorithm 1 can still
return solutions within a few milliseconds. According to the
trend in Fig. 5, we believe that when n is large, the solutions
returned by Algorithm 1 are not optimal but remain close to
the optimal solution. More importantly, since Algorithm 1
can return a suboptimal solution quickly, Algorithm 1 is more
useful than the graph-search algorithm when n is large.

In Experiment 2, we used our algorithm to generate
motion plans for autonomous vehicles in a parking lot. We
considered three maneuvers: 1) shifting a block of vehicles
to the right, 2) moving a block of vehicles forward and then
making a left turn, and 3) reserving the orientation of a
block of vehicles. In each maneuver, we handpicked different
sequences of intermediate formations. Then we measured the
average makespan of the timed meta-formation plan, and the
result is shown in Table I. This experiment demonstrates the
feasibility of our approach for essential vehicle maneuvers
in confined areas. We found no difficulty in handpicking the
intermediate formations to accomplish the maneuvers.

VI. DISCUSSION AND FUTURE WORK

We have presented a new dynamic programming algorithm
for planning a group of vehicles to move from one formation
to another with respect to their dynamic safety buffer. This
grid-based approach relies on a sequence of intermediate
formations that can be either given or generated automati-
cally. Our algorithm can generate a schedule of local motion
plans for many vehicles with a suboptimal makespan within
a few milliseconds, which is much faster than a complete
graph search algorithm. The speed of the algorithm is very
important in some applications such as autonomous parking
lots. Our experimental results show that the makespan of
the motion plans generated by this algorithm is not far
off when compared with an exact algorithm. The bilevel
optimization procedure stitches the motion plans together to
create a motion plan that moves a group of vehicles along
the sequence of intermediate formations efficiently.

The advantage of our approach is that our algorithm
can run extremely fast and can scale better than exist-
ing multirobot motion planning algorithms as the number
of vehicles increases. Moreover, our grid-based approach,
which converts vehicles’ trajectories into sets of tiles for
collision detection, can easily handle non-holonomic con-
straints of vehicles’ motions as well as the dynamic safety
buffer for emergency stops. Although we focus on motion
planning in 2D workspaces, our approach should work in
other multirobot systems in 3D environments. Nonetheless,
our approach has several limitations. First, vehicles are
required to stop completely at their designated locations in
intermediate formations, causing non-smooth rides. In the
future, we intend to utilize lattice-based motion planning
to generate smooth trajectories between formations. Second,
our approach only works with directed acyclic formation
planning graphs. In some cases, valid motion plans exist even
if there are cycles in the graph. Hence, one future work is
to make our algorithm work with undirected cyclic graphs.

ACKNOWLEDGMENTS

This work has been taken place at UNIST and was
supported by NRF (2022R1A2C101216812).

REFERENCES

[1] M. Turpin, N. Michael, and V. Kumar, “Trajectory design and control
for aggressive formation flight with quadrotors,” Autonomous Robots,
vol. 33, pp. 143–156, 2012.

[2] H. Wang and M. Rubenstein, “Shape formation in homogeneous
swarms using local task swapping,” IEEE Transactions on Robotics,
vol. 36, no. 3, pp. 597–612, 2020.

[3] H. Duan, Q. Luo, Y. Shi, and G. Ma, “Hybrid particle swarm optimiza-
tion and genetic algorithm for multi-uav formation reconfiguration,”
IEEE Computational Intelligence Magazine, vol. 8, no. 3, pp. 16–27,
2013.

[4] J. H. Reif, “Complexity of the movers problem and generalizations,”
in IEEE Symposium on Foundations of Computer Science, 1979.

[5] J. E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the complexity
of motion planning for multiple independent objects: Pspace-hardness
of the “warehouseman’s problem”,” International Journal of Robotics
Research, vol. 3, no. 4, pp. 76–88, 1984.

[6] J. Yu and S. M. LaValle, “Distance optimal formation control on
graphs with a tight convergence time guarantee,” in IEEE Conference
on Decision and Control, 2012.

[7] ——, “Shortest path set induced vertex ordering and its application to
distributed distance optimal formation path planning and control on
graphs,” in IEEE Conference on Decision and Control, 2013.

[8] J. Timpner, S. Friedrichs, J. van Balen, and L. Wolf, “k-stacks: High-
density valet parking for automated vehicles,” in IEEE Intelligent
Vehicles Symposium, 2015.

[9] H. Banzhaf, F. Quedenfeld, D. Nienhüser, S. Knoop, and J. M. Zöllner,
“High density valet parking using k-deques in driveways,” in IEEE
Intelligent Vehicles Symposium, 2017, pp. 1413–1420.

[10] J. Azevedo, P. M. D’orey, and M. Ferreira, “High-density parking for
automated vehicles: A complete evaluation of coordination mecha-
nisms,” IEEE Access, vol. 8, pp. 43 944–43 955, 2020.

[11] T.-C. Au, “Gridlock-free autonomous parking lots for autonomous
vehicles,” in IEEE/RSJ International conference on Intelligent Robots
and Systems, 2021, pp. 4881–4887.

[12] K. Dresner and P. Stone, “A multiagent approach to autonomous
intersection management,” Journal of Artificial Intelligence Research
(JAIR), March 2008.

[13] Y. Wei, C. Avcı, J. Liu, B. Belezamo, N. Aydın, P. Li, and X. Zhou,
“Dynamic programming-based multi-vehicle longitudinal trajectory
optimization with simplified car following models,” Transportation
Research Part B: Methodological, vol. 106, pp. 102–129, 2017.

[14] H. Rezaee, T. Parisini, and M. M. Polycarpou, “Resiliency in dynamic
leader–follower multiagent systems,” Automatica, vol. 125, no. 4,
2021.

[15] L. Dou, S. Cai, X. Zhang, X. Su, and R. Zhang, “Event-triggered-
based adaptive dynamic programming for distributed formation control
of multi-uav,” Journal of the Franklin Institute, vol. 359, no. 8, pp.
3671–3691, 2022.

[16] S. Thrun and A. Bücken, “Integrating grid-based and topological
maps for mobile robot navigation,” in Proceedings of the National
Conference on Artificial Intelligence (AAAI), 1996, pp. 944–950.

[17] T.-C. Au, C.-L. Fok, S. Vishwanath, C. Julien, and P. Stone, “Evasion
planning for autonomous vehicles at intersections,” in IEEE/RSJ
International conference on Intelligent Robots and Systems, 2012, pp.
1541–1546.

[18] F. Wu, D. Wang, M. Hwang, C. Hao, J. Lu, T. Darrell, and A. Bayen,
“Motion planning in understructured road environments with stacked
reservation grids,” in ICRA Workshop on Perception, Action, Learning
(PAL), 2020.

[19] M. Cirillo, T. Uras, and S. Koenig, “A lattice-based approach to multi-
robot motion planning for non-holonomic vehicles,” in IEEE/RSJ
International conference on Intelligent Robots and Systems, 2014, pp.
232–239.

[20] M. Cirillo, “From videogames to autonomous trucks: A new algo-
rithm for lattice-based motion planning,” in IEEE Intelligent Vehicles
Symposium, 2017, pp. 148–153.

[21] M. Vukosavljev, A. P. Schoellig, and M. E. Broucke, “Hierarchically
consistent motion primitives for quadrotor coordination,” arXiv, 2019.

[22] M. Vukosavljev, Z. Kroeze, A. P. Schoellig, and M. E. Broucke, “A
modular framework for motion planning using safe-by-design motion
primitives,” IEEE Transactions on Robotics, vol. 35, no. 5, pp. 1233–
1252, 2019.

[23] D. J. Grymin, C. B. Neas, and M. Farhood, “A hierarchical approach
for primitive-based motion planning and control of autonomous vehi-
cles,” Robotics and Autonomous Systems, vol. 62, no. 2, pp. 214–228,
2014.

[24] T.-C. Au, N. Shahidi, and P. Stone, “Enforcing liveness in autonomous
traffic management,” in Proceedings of the National Conference on
Artificial Intelligence (AAAI), 2011, pp. 1317–1322.

[25] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[26] ——, “Rapidly-exploring random trees: A new tool for path planning,”
Computer Science Dept, Iowa State University, Tech. Rep. TR 98-11,
1998.

[27] S. M. LaValle and J. James J. Kuffner, “Rapidly-exploring random
trees: progress and prospects,” in Algorithmic and Computational
Robotics: New Directions, 2000, pp. 293–308.

[28] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[29] L. E. Kavaki, P. Švestka, J.-C. Latombe, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, 1996.

