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Abstract

This is the technical appendix for the paper entitled “Block-
Level Goal Recognition Design” published in AAAI 2024.
This document contains the pseudocodes, the definitions, and
the examples that are omitted in the paper. Moreover, we
present two new results for improving the performance of the
GRD algorithms: correlated blocks and legal path bundles.
Specifically, this document contains:
• The pseudocodes of the breadth-first search algorithm as

described in the paper;
• The description and the pseudocodes of the local search

algorithm;
• The definition of compact path trees;
• An example showing how the design subtree pruning rule

works;
• The definition and the analysis of correlated blocks, which

states that if we can merge several correlated blocks into
one block, the effect of combining correlated blocks is like
pruning some branches in the search space of the complete
GRD algorithms; and

• The definition and the analysis of legal path bundles,
which is a technique for reducing the number of legal paths
by implicitly representing a set of legal paths by a legal
path bundle if certain assumptions hold.

Breadth-First Search with Pruned-Reduce and
Design Subtree Pruning

Algorithm 1 is the pseudocode of the BFS with pruned-
reduce and design subtree pruning. The inputs are the root
block broot, the set of legal paths P leg , the pre-computed sets
of blocks Binvalid that possibly invalidate the legal paths, and
the set of all blocks Ball. The BFS repeatedly takes the first
design tree Θ from the queue and extends Θ with feasible
blocks for its open regional vertices until the queue is empty.
Pruned-reduce is implemented in Line 14, which only al-
lows feasible blocks that possibly invalidate the legal paths
in Pwcd to be used for extending Θ. Lines 10 and 12 imple-
ment a design subtree pruning rule. PrunedRegions(bi) is
the set of regional vertices in bi that are pruned as described
in the paper. Finally, the BFS returns a design tree with the
minimum WCD.
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Algorithm 1: BFS with Block-Level Pruned-Reduce and De-
sign Subtree Pruning
Procedure BFSwithPruning(broot, P leg, Binvalid, Ball)

1: WCDmin := ∞; Θmin := ∅; Binvalid
wcd := Ball

2: Let Q be a queue; add Θ0 = {broot} to Q
3: while Q is not empty do
4: Remove the first design tree Θ from Q
5: if Θ is encompassing and WCD(Θ) < WCDmin then
6: WCDmin := WCD(Θ); Θmin := Θ
7: Pwcd := a subset of P leg s.t. |prefix(p1, p2)| =

WCDmin for all p1, p2 ∈ Pwcd

8: Binvalid
wcd :=

⋃
p∈Pwcd

Binvalid(p)
9: for each non-terminal block bi ∈ Θ do

10: Compute PrunedRegions(bi) if it does not exist.
11: for each open regional vertex vj ∈ V r in bi do
12: if vj ̸∈ PrunedRegions(bi) then
13: for each subblock bk ∈ dom(vj) do
14: if bk ∈ Binvalid

wcd then
15: Add (Θ ∪ {bk}) to the end of Q
16: return Θmin

Local Search for Block-Level GRD
The BFS is inefficient since it is an optimal complete search
algorithm. For large-scale GRD problems, we opt for a lo-
cal search algorithm that can return a suboptimal design
tree quickly. Algorithm 2 is the pseudocode of the algo-
rithm. The algorithm uses the min-conflict heuristics that is
highly effective for certain constrained optimization prob-
lems (Minton et al. 1992; Sosič and Gu 1994). The algorithm
starts with a random design tree Θ that is full and encom-
passing. Then it iteratively improves it by randomly choos-
ing a block in Θ, replacing it with a random block, and gen-
erating a new random design subtree for it if there is none
previously. Since the working principle of pruned-reduce
suggests that we should focus on modifying the blocks that
possibly invalidate the legal paths that yield the WCD, the
algorithm prefers choosing such blocks in Line 17. We call
this preference the pruned-reduce-like heuristic in the pa-
per. Occasionally, it chooses a block randomly based on
the ϵ-greedy exploration strategy (Lines 14–17). Thus, the
pruned-reduce-like heuristic only gives a higher priority to
the blocks that possibly invalidate legal paths that yield the



Algorithm 2: Local Search for Block-Level GRD
Procedure LocalSearch(broot, P leg, Binvalid, Ball)

1: WCDmin := ∞; Θmin := ∅; Binvalid
wcd := Ball; Trial := 0

2: while Trial ≤ MaxTrialNum do
3: Randomly create a full, encompassing design tree Θ.
4: NoImproveNum := 0
5: while NoImproveNum ≤ MaxNoImproveNum do
6: if Θ is encompassing and WCD(Θ) < WCDmin

7: WCDmin := WCD(Θ); Θmin := Θ
8: Pwcd := a subset of P leg s.t. |prefix(p1, p2)| =

WCDmin for all p1, p2 ∈ Pwcd

9: Binvalid
wcd :=

⋃
p∈Pwcd

Binvalid(p)
10: NoImproveNum := 0; Trial := 0
11: else
12: NoImproveNum++; Θ := Θmin

13: q := generate a random number in [0, 1)
14: if q < ϵ then
15: Randomly select non-terminal block bi ∈ Θ
16: else
17: Randomly select non-terminal block bi ∈ Binvalid

wcd
18: Compute PrunedRegions(bi) if it does not exist.
19: Randomly select a regional vertex vj ∈ V r in bi

and vj ̸∈ PrunedRegions(bi)

20: Let bk1
∈ dom(vj) s.t. bk1

∈ Θ.
21: Randomly select bk2

∈ dom(vj) s.t. k1 ̸= k2.
22: Θ := (Θ \ {bk1

}) ∪ {bk2
}

23: if a design subtree of bk2
was generated previously

24: Reuse the latest design subtree of bk2 in Θ
25: else
26: Randomly generate a design subtree of bk2 in Θ
27: Trial := Trial + 1
28: return Θmin

WCD. Lines 18 and 19 implement the design subtree prun-
ing rule as described in the paper. The number of random
restarts is controlled by MaxTrialNum, which is a given pa-
rameter. In each trial, the local search keeps improving Θmin

until WCDmin remains unchanged for MaxNoImproveNum
iterations, where MaxNoImproveNum is another parameter.
The running time of the algorithm depends on how quickly
it converges to a local minimum, but typically, the running
time is linear to the number of blocks, making it suitable for
large-scale GRD problems.

Compact Path Trees
Let b = parent[b′] be the parent of b′ and vr = v[b′]
be the regional vertex in b that can be substituted by b′.
Let (V, V r, E,Er, V entry, V exit) be the specification of b′,
where G′ = (V, V r, E,Er) is the extended search space of
b′, V entry is a set of entries, and V exit is a set of exits. Let
V in and V out be the incoming and outgoing vertices of vr in
b, respectively.

Let p = ⟨v1, v2, . . . , vm⟩ be a subpath of a legal path that
lies inside b, where v1 is an entry in b and vm is an exit in b.
Note that p can go through G′ of b′ many times or do not go
through G′ at all. Suppose p goes through G′ via the regional

vertex vr. We want to identify a subpath p′ of p that lies
inside G′ entirely.

If there is (vi, vi+1) ∈ edges(p) s.t. vi ∈ V in and vi+1 ̸∈
V for some 1 ≤ i < m, vi+1 is the first vertex in the subpath
p′. If there is another edge (vj , vj+1) ∈ edges(p) s.t. vj ̸∈
V and vj+1 ∈ (V ∩ V out) for some 1 ≤ i < j < m,
vj is the last vertex in p′. Then p′ is ⟨vi+1, vi+2, . . . , vj⟩.
After we identify p′, we create a compact path c by replacing
⟨vi+1, vi+2, . . . , vj⟩ with the regional vertex vr in p. That is,
c = ⟨v0, v1, . . . , vi, vr, vj+1, vj+2, . . . , vm⟩.

However, suppose (vi, vi+1) exists where vi ∈ V in and
vi+1 ̸∈ V , but (vj , vj+1) where vj ̸∈ V and vj+1 ∈ V out

does not exist. It means that p entered G′ of b′ and does
not exit G′ through V out. Since the goal vertices are or-
dinary vertices in the root block, p must have exited G′

via another regional vertex vr1 ∈ V out, where vr1 ̸= vr
and there is an edge from vr to vr1 in the extended search
space of b. Then, we look into the exits of vr1 to see
whether p exits from them. If not, we look into the exits
of another regional vertex vr2 in the set of outgoing ver-
tices of vr1 , and so on. Eventually, p will exit from one
of the regional vertices in b. Let ⟨v′r, v′r1 , . . . , v

′
rl
⟩ be the

chain of regional vertices p goes through. Although we do
not know which section of the subpath p belongs to G′

and which section belongs to the feasible blocks of other
regional vertices in the chain, we create a compact path
c = ⟨v0, v1, . . . , vi, vr, vr1 , . . . , vrl , vj+1, vj+2, . . . , vm⟩.

We need to check whether the remaining of c (i.e.,
⟨vj+1, vj+2, . . . , vm⟩) passes through other regional ver-
tices in b or re-enters some of the regional vertices in
⟨vr, vr1 , . . . , vrl⟩. If so, we replace the subpaths in c with
the corresponding regional vertices. In the end, we get a new
compact path for p that includes all regional vertices p goes
through.

Since a regional vertice v in c can appear multiple times
in c since p can go through v multiple times. To distinguish
all instances of a regional vertice v in c, we label them dif-
ferently: we add a superscript i to v for the i’th instance of
v in c, such that all regional vertices in c are different (i.e.,
v1, v2, . . . , vk are the different regional vertices in c but the
same regional vertex in p).

A compact path tree T compact for a given set P of subpaths
is a tree with both ordinary vertices and regional vertices,
and each path from the root of T compact to a terminal vertex
of T compact is a compact path of a subpath p ∈ P . Figure 1
shows the compact path tree of the example in the paper. If
two different subpaths p1, p2 ∈ P ’s junction is v (e.g., C3 in
Figure 1), they will share the same trunks in T compact for the
vertices in prefix(p1, p2). Moreover, for each junction with
n branches in the legal path tree T formed by P , there is a
junction with n branches in T compact.

We construct a compact path tree T compact from a legal
path tree T as follows. Initially, T compact is a legal path
tree formed by combining the paths in T . For each sub-
path p ∈ P , if a subpath p′ of p is substituted by a re-
gional vertex v′ in the corresponding compact path, p′ in
T compact will be substituted by v′ as well. Moreover, if a
subpath p′ of p is substituted by a sequence of regional ver-
tices ⟨v′1, v′2, . . . , v′m⟩ in the corresponding compact path, p′
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Figure 1: A legal path tree T for the example in Figure 1 in the paper. The tree on the right is the corresponding compact path
tree T compact, which is the same as T except that the set of states inside the regional vertex vr in T are replaced by vr.

in T compact will be substituted by ⟨v′1, v′2, . . . , v′m⟩.
However, if p′ goes through a junction in T , we must

add additional branches to v′ or some regional vertices in
⟨v′1, v′2, . . . , v′m⟩. When p′ is substituted by v′ only, we must
create different branches after v′ for different branches of v
in T . In other words, if v is a junction in T with two or more
child vertices and p′ goes through v to one of the child ver-
tices while p′ has entered a regional vertex v′, the subpaths
that go to other child vertices of v also enter v′. Thus, these
subpaths will be substituted by v′ or a sequence of regional
vertices starting with v′ in T compact. Therefore, we must add
a new branch after v′ in T compact for each branch of v in T .
When p′ is substituted by ⟨v′1, v′2, . . . , v′m⟩, we must add ad-
ditional branches to v′i for some 1 ≤ i ≤ m to T compact for
other subpath p′′ that goes through v in T but p′′ ̸= p′. Here,
v′i is the regional vertex from which p′′ leaves the sequence
⟨v′1, v′2, . . . , v′m⟩.

An Example of Design Subtree Pruning
This section provides an example to illustrate how the design
subtree pruning rule works. Figure 2 shows an environment
with eight legal paths to different goals. The root block broot
has three regional vertices: v1, v2, and v3. The domains of
v1 and v3 are dom(v1) = {b1, b2} and dom(v3) = {b5, b6},
respectively. These blocks act like on-off switches for the
legal paths to g2 and g7. The domain of v2 is dom(v2) =
{b3, b4}. This pair of blocks acts like a toggle between g4
and g5 such that the environment design can only choose to
allow one legal path to reach either g4 or g5 but not both. In
short, dom(v2) enforces a design constraint that g4 and g5
are mutually exclusive.

We shall follow the definitions in Section “Pruning De-
sign Subtrees” in the paper to define the legal path trees in
this example. Let P = P leg . The middle of Figure 2 shows
the legal path tree T formed by combining the legal paths
in P . Then, we construct a compact path tree T compact by
replacing the subpaths in T that go through the regions with

the regional vertices, as described in the previous section.
More precisely, ⟨B9⟩ is replaced by v1, ⟨D9⟩ is replaced by
v2, ⟨E9⟩ is replaced by v2, and ⟨G9⟩ is replaced by v3. The
tree at the right side of Figure 2 is T compact.

Figure 3 shows how to calculate the lower and upper
bounds of the relative WCDs of the vertices in the legal path
tree T according to the instructions in the paper. Since the
environment is a root block broot, the vertices of the initial
state s0 and the goal states are ordinary vertices. In addition,
we set the lower and upper bounds of these terminal ver-
tices (i.e., the goal vertices) in T as zero. We shall use T and
Tmin to compute the lower and upper bounds of the internal
vertices in T . Tmin is derived from T by removing all the
legal paths in T that any feasible block of any regional ver-
tex could possibly invalidate. In this example, there are six
feasible blocks, and they invalidate four legal paths: b2 in-
validates the legal path to g2; b3 invalidates the legal path to
g5; b4 invalidates the legal path to g4; and b6 invalidates the
legal path to g7. Hence, we remove these legal paths from T
to form Tmin as shown in the tree in the middle of Figure 3.

Since the remaining four paths in Tmin are not invali-
dated by any blocks, they will never be invalidated regard-
less of the choice of the design subtrees of the regional ver-
tices. Therefore, the relative WCDs of the internal vertices in
Tmin, computed by Equation 3, are the lower bounds of the
relative WCDs of the internal vertices. It is because no mat-
ter which design subtrees are chosen, the set of valid legal
paths must include those in Tmin. Adding more legal paths
to Tmin could only increase the relative WCDs. Hence, these
relative WCDs are the lower bounds of the relative WCDs
after the design subtrees are chosen.

For the sake of completeness, for every vertex v in T but
not in Tmin, we set the lower bound of the relative WCD of
v to 0. It is because the legal paths going through v may or
may not be invalidated eventually. If they are not invalidated,
v will have a relative WCD. In the worst case, only one legal
path is going through v that is not invalidated such that the
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Figure 2: An environment with three regional vertices: v1, v2, and v3, where dom(v1) = {b1, b2}, dom(v2) = {b3, b4}, and
dom(v3) = {b5, b6}. There are eight legal paths. The legal path tree T and the compact path tree T compact of the legal paths are
shown in the figure.
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Figure 3: In the legal path tree T , the number adjacent to a vertex is the upper bound of the relative WCD of the state. In the
legal path tree Tmin, the number adjacent to a vertex is the lower bound of the relative WCD of the state. In T compact, the pair
of numbers adjacent to C2 and E3 are the lower and upper bounds of the relative WCDs of the state. The two crossed vertices
in T compact are marked as “pruned” . However, only v1 is put in PrunedRegions(broot), where broot is the root block of this
environment.



relative WCD of v is 0. Thus, the lower bound of the relative
WCD of v is 0.

Similarly, the relative WCDs of the internal vertices in T ,
computed by Equation 3 in the paper, are the upper bounds
of the relative WCDs of the internal vertices. It is because
no matter which design subtrees are chosen, the set of valid
legal paths must be a subset of Tmin. Removing some legal
paths from T could only decrease the relative WCDs. Hence,
these relative WCDs are the upper bounds of the relative
WCDs after design subtrees are selected.

After calculating the lower and upper bounds of the rel-
ative WCDs of the internal vertices in T , we check every
junction v in T to see whether there are two child vertices
v1, v2 ∈ children(v) of v such that the lower bound of the
relative WCD of v1 is greater than the upper bound of the
relative WCD of v2. In Figure 3, T has seven junctions (D2,
C3, B4, C4, F6, F7, G8). The only junction that satisfies the
condition is D2, because D2 has two child vertices C2 and
E2, and the lower bound of the relative WCD of E2 is 6
and the upper bound of the relative WCD of C2 is 4. Since
the upper bound of the relative WCD of C2 is smaller than
the lower bound of the relative WCD of E2, we mark all re-
gional vertices in the subtree of C2 in T compact as “pruned”.
The subtree of C2 in T compact has two regional vertices: v1
and v2, and both are marked as “pruned” as shown in the
right subfigure in Figure 3.

However, only v1 is put in PrunedRegions(broot) for the
BFS to prune the design subtrees of v1. We do not put v2 in
PrunedRegions(broot) because v2 occurs twice in T compact

and not all instances of v2 are marked as “pruned” (more
specifically, v2 before E10 is not marked as “pruned”). Thus,
the BFS still needs to expand the open regional vertex v2 in
the design tree since this affects the WCD of the design tree
via the legal path to g5. By contrast, the minimum WCD
would not be affected by the choice of the design subtree of
v1—the relative WCD of D2 remains the same regardless of
the block used for substituting v1. Since the relative WCD of
D2 is independent of the design subtree of v1, the minimum
WCD, which is the relative WCD of D1 minus 1, is also
independent of the design subtree of v1. Therefore, the GRD
algorithms can avoid the expansion of v1 to save time. The
pseudocodes of the BFS and the local search algorithm in
this document have already utilized PrunedRegions(broot) to
prune v1.

The pruning rule works in this simple environment even
if the blocks for the regional vertices are more complicated
and their child blocks contain subblocks. In this case, when
we compute Tmin, we have to use all possible subblocks to
check for the invalidation of legal paths in T .

If the environment is not a root block but a child block b
of another block parent[b] such that s0 is not an initial ver-
tice but an entry of b and the goal vertices are the exits of b,
we cannot assume the lower and upper bounds of the rela-
tive WCDs of the exits are zero. Instead, the lower and up-
per bounds of the relative WCDs of the exits are computed
from their child vertices in the legal paths. These child ver-
tices are not in b. If they are ordinary vertices in parent[b],
we can obtain the lower and upper bounds of the relative
WCDs of the child vertices in parent[b]. However, this re-

quires us to compute the lower and upper bounds of the rel-
ative WCDs of the vertices in parent[b] before compute the
lower and upper bounds of the relative WCDs of the vertices
in b. Fortunately, if we apply the design subtree pruning rule
of the blocks in the hierarchical design space in a top-down
manner, parent[b] is always evaluated before b. If some of
the child vertices are not ordinary vertices in parent[b], they
must be ordinary vertices in some feasible blocks of another
regional vertex v′ in parent[b], and v′ is adjacent to the re-
gional vertex of b in parent[b]. In this case, we need to eval-
uate the chain of regional vertices in parent[b] together as if
one regional vertex.

The example in Figure 3 highlights the situations in which
pruning design subtrees can likely occur. In Figure 3, we can
see that the junctions in the left subtree of D2 in T are much
closer to s0 than the junctions in the right subtree of D2.
Since the junctions are the vertices that potentially yield the
WCD, we can deduce that the relative WCDs of the ver-
tices in the right subtree must be larger than that in the left
subtree. Thus, it is likely that the vertices that yield the min-
imum WCDs are in the right subtree for any design tree. The
design subtree pruning looks for the discrepancy of the loca-
tions of the junctions in the subtrees and ignores the regional
vertices in the subtree whose junctions are close to the root
of the legal path tree.

The effectiveness of this pruning rule depends on other
factors as well. For example, if the pruned regional vertices
have some large design subtrees, our GRD algorithms can
speed up tremendously by avoiding these design subtrees.

Performance Improvement by Correlated
Blocks

The performance gain of our block-level GRD algorithms
stems from using blocks, which merge several correlated
modifications into one modification. We can apply the same
idea by merging several correlated blocks into one. For ex-
ample, in Figure 4, there are two regional vertices v1 and
v2, and dom(v1) = dom(v2) = {b1, b2, b3}. If a de-
sign constraint is that the region represented by v1 and v2
must connect to each other all the time, we cannot sub-
stitute b2 for v1 or b1 for v2. In general, if only some
combinations of the blocks in dom(v1) and dom(v2) of
two adjacent regional vertices v1 and v2 are allowed, we
can merge v1 and v2 into one regional vertex v3 such that
dom(v3) ⊆ dom(v1) × dom(v2). For example, in Figure 4,
we have dom(v3) = {(b1, b2), (b1, b3), (b3, b2), (b3, b3)}.
Since |dom(v3)| is much less than |dom(v1)×dom(v2)|, the
performance speedup is achieved by avoiding the enumera-
tion of all possible combinations of dom(v1) and dom(v2).

Suppose 1) every block has k regional vertices, 2) the do-
main size of every regional vertex is m, and 3) all design
trees are full and have a height of h. There are mk(h+1)−1

mk−1

different design trees. Now suppose 1) the set of k re-
gional vertices can be partitioned into k/g groups such that
the child blocks of the g regional vertices in a group are
correlated, where 1 < g ≤ k/2, and 2) the size of the
combined domain

∏
vi∈V r dom(vi) is α

∏
vi∈V r |dom(vi)|,

where V r is a group of regional vertices whose child blocks



Figure 4: An example of correlated blocks. The regional ver-
tices v1 and v2 can be substituted by blocks b1, b2, and b3.
If a design constraint is that we must keep the connection
between the regions represented by v1 and v2 open, some
combinations of the substitutions would violate this design
constraint.

Figure 5: An example of legal path bundles.

are correlated and 0 < α ≤ 1. After combining the corre-
lated blocks, the number of different design trees is roughly
(αm)k(h+1)−1

(αm)k−1
. If α is 1, the number of design trees remains

the same. If α is less than 1, the “branching factor” mk is
multipled by αk, which is less than 1. Then, the effect of
combining correlated blocks is like pruning some branches
in the search space of the complete GRD algorithms.

Reducing the Number of Legal Paths by Legal
Path Bundles

The existing GRD works assume that the set of legal paths
is given beforehand or can be generated quickly. Typically,
the set P leg of legal paths is small, so agents can only fol-
low some chosen paths (e.g., the shortest paths) to reach
their goals. However, if agents are truly allowed to move
freely in an environment, the set of feasible paths agents can
choose can be huge. In the worst case, the number of fea-
sible paths in a search space is exponential to the size of
the search space. The computation of the WCD would be-
come too time-consuming if P leg is too large. Moreover, a
computer could run out of memory if we explicitly store all
feasible paths in P leg .

This section describes an approach to handle many feasi-
ble paths in P leg. This approach depends on some assump-
tions we make for the paths and blocks, such that we can im-
plicitly represent a set of related legal paths by a legal path
bundle. At the same time, the computation of the WCDs re-
mains the same with legal path bundles. For example, in Fig-
ure 5, a subset of legal paths P ⊆ P leg can be replaced by
just one legal path in Pbundle without changing the WCD if
certain conditions are satisfied. In this section, we state a
sufficient condition for a successful replacement of P with
Pbundle and prove that the WCD remains unchanged under
the condition.

Motivating Example
First, we consider a simple case in which there is one re-
gional vertex v in the root block broot, and v has one child
block b, one incoming vertex in V in, and one outgoing vertex
in V out. Suppose all legal paths in P leg have to go through b.
For every path pi ∈ P leg , we partition pi into three subpaths:
1) pbi is the subpath of pi that lies inside b entirely, 2) pprefixi is
the prefix of pi before pbi , and 3) psuffix

i is the suffix of pi af-
ter pbi . Let path[pbi ] = path[pprefixi ] = path[psuffix

i ] = pi. We
say pi is the complete path of pbi , pprefixi , and psuffix

i . The col-
lection of these subpaths are stored in P leg

b = {pbi}pi∈P leg ,
P leg
prefix = {pprefixi }pi∈P leg , and P leg

suffix = {psuffix
i }pi∈P leg .

Let G = {g1, g2, . . . , gn} be the set of all goals. We fur-
ther partition P leg

b into Pb
goal = {P b

g1 , P
b
g2 , . . . , P

b
gn} such

that for every pbi ∈ P b
gj , the goal of the complete path pi of

pbi is g[pi] = gj , for 1 ≤ j ≤ n.
The first assumption for forming legal path bundles is:

Definition 1 P leg
b is goal-equivalent if and only if P b

gi =

P b
gj for all P b

gi , P
b
gj ∈ Pb

goal, where 1 ≤ i < j ≤ n.

This definition states that the set of subpaths for every goal
in Pb

goal are the same in a goal-equivalent P leg
b . For any two

different goals gj1 and gj2 , if there is a subpath pbi ∈ P b
gj1

s.t.
path[pbi ] reaches gj1 ,there is also another subpath pbk ∈ P b

gj2

s.t. path[pbk] reaches gj2 and pbi = pbk.
Likewise, we partition P leg

suffix into Psuffix =

{P suffix
pb
1

, P suffix
pb
2

, . . . , P suffix
pb
m

} for all pbi ∈ P leg
b , where

P suffix
pb
i

is the set of all suffices whose complete paths contain

pbi . The second assumption for forming legal path bundles
is:

Definition 2 P leg
suffix is suffix-equivalent if and only if

P suffix
pb
i

= P suffix
pb
j

for any pbi , p
b
j ∈ P leg

b s.t. pbi = pbj .

In other words, if two subpaths in P leg
b are the same, the set

of suffices of the corresponding complete paths are also the
same.

The goal-equivalence of P leg
b and the suffix-equivalence

of P leg
suffix allow us to replace a subpath in P leg

b with another
subpath in P leg

b for the same goal and this would not affect
the subpaths in P leg

suffix since their suffices and their goals are
the same.

Let pblongest ∈ P leg
b be the longest subpath in P leg

b . For
each legal path pi ∈ P leg , we replace the subpath pbi in pi
by pblongest to form a new legal path pbundlei . Let P leg

bundle be
the set of legal paths after replacing pbi with pblongest. Obvi-
ously, P leg

bundle is a subset of P leg since it only includes the
legal paths whose subpaths in P leg

b are pblongest. The follow-
ing theorem states that if we substitute P leg

bundle for P leg, the
WCD remains the same.



Theorem 1 If 1) pprefixi = pprefixj for all pprefixi , pprefixj ∈
P leg
prefix, 2) P leg

b is goal-equivalent, and 3) P leg
suffix is suffix-

equivalent, the WCD of P leg and the WCD of P leg
bundle are

the same.

Proof First, since all subpaths in pprefixi are the same, the
WCD of P leg must be larger than the length of any subpath
in pprefixi . Second, we prove by contradiction that the state
that yields the WCD does not exist in the subpaths in P leg

b .
Assume the state that yields the WCD is the last state of
prefix(pb1, p

b
2), where pb1, p

b
2 ∈ P leg

b such that the goals g1, g2
of their corresponding complete paths are different, respec-
tively, but pb1 ̸= pb2. Without loss of generality, let |pb1| ≥
|pb2|. We have |prefix(pb1, pb2)| < |pb1| since pb1 and pb2 are dif-
ferent. Since P leg

b is goal-equivalent, there exists a subpath
pb3 ∈ P leg

b that is the same as pb1 but the goal of the corre-
sponding complete path is g2 instead of g1. Clearly, the state
that yields the WCD is not the last state of prefix(pb1, p

b
2)

since |prefix(pb1, pb3)| = |pb1| > |prefix(pb1, pb2)|. Hence, by
contradiction, there are no pb1, p

b
2 ∈ P leg

b such that the last
state of prefix(pb1, p

b
2) yields the WCD. Third, let s on some

paths in P leg
suffix be the state that yields the WCD. Since P leg

suffix
is suffix-equivalent, the relative WCD of the first state of
any subpath in P leg

suffix are the same. Since all subpaths in
pprefixi have the same length, there exist complete legal paths
p1, p2 ∈ P leg where the last state of their common prefix is s
such that their subpaths in P leg

b are pblongest. It turns out both
p1 and p2 are in P leg

bundle, and hence the WCD of P leg
bundle are

the same as the WCD yields by s in P leg . 2

Since the WCD of P leg
bundle is equal to the WCD of P leg

but P leg
bundle is much smaller than P leg , we could substitute

P leg
bundle for P leg in our GRD algorithms and yet the al-

gorithms produce the same design tree with the minimum
WCD. Hence, even if we include all kinds of variants of
any subpath in P leg

b so that P leg becomes large, the size of
P leg
bundle remains the same, and we can use P leg

bundle to com-
pute the optimal design tree with the same minimum WCD.

Goal-Equivalence and RWCD-equivalence

We can generalize Theorem 1 by rewriting the theorem in
terms of the relative WCD of the subpaths as follows.

Definition 3 Given 1) two ordinary vertices v1, v2 ∈ V in
an extended search space G = (V, V r, E,Er) and 2) a sub-
set P ⊆ P leg of all legal paths such that a) all paths in P
first go through v1 and then go through v2 (more precisely,
if subpath(p, v1, v2) is the subpath of p from v1 to v2, in-
clusively, then v ∈ V for all v ∈ subpath(p, v1, v2) and
(v, v′) ∈ E for all edge (v, v′) on subpath(p, v1, v2)) and
b) the prefix before v1 of any path in P are the same, we
say P is goal-equivalent for v1 and v2 if and only if the
set of all subpaths {subpath(p, v1, v2)}p∈P can be parti-
tioned into P = {Pgi}gi∈G′ such that Pgi1

= Pgi1
for any

gi1 , gi2 ∈ G′, where G′ = {g[p]}p∈P and |G′| ≥ 2.

Note that |G′| has to be larger than or equal to 2 in Defini-
tion 3.

Definition 4 Given 1) two ordinary vertices v1, v2 ∈ V and
2) a subset P ⊆ P leg of all legal paths in P leg that first go
through v1 and then go through v2 and has the same prefix
before v1, we say P is RWCD-equivalent for v1 and v2 if
and only all relative WCDs RWCD(Θ, v) of all v in the legal
path tree formed by combining the prefixes of the paths in T
are the same for any design tree Θ.

Suffix-equivalence in Definition 2 requires that the subtrees
at v in the legal path tree are the same. Hence, suffix-
equivalence will satisfy the conditions in Definition 4.

Theorem 2 Given 1) two ordinary vertices v1, v2 ∈ V
and 2) a subset P ⊆ P leg of all legal paths in P leg that
first go through v1 and then go through v2 and has the
same prefix before v1, if P is goal-equivalent and RWCD-
equivalent for v1 and v2, the relative WCD at v1 in the le-
gal path tree formed by P is the same as the relative WCD
at v1 in the legal path tree formed by Pbundle for any de-
sign tree Θ, where Pbundle ⊆ P is a subset of paths in P
whose subpath(p, v1, v2) = subpath(plongest, v1, v2), where
plongest = argmaxp∈P |subpath(p, v1, v2)| is the path with
the longest subpath between v1 and v2.

Proof Let us assume RWCD1 at v1 in the legal path tree
formed by P is different from RWCD2 at v1 in the legal
path tree formed by Pbundle. It means that there are two legal
paths p1, p2 ∈ P that yields RWCD1 at v1, but p1 ̸= plongest.
Due to goal-equivalence, there exists p3 ∈ P such that p3 =
plongest and g[p3] = g[p1]. Likewise, there exists p4 ∈ P
such that p4 = plongest and g[p4] = g[p2]. Then RWCD3 at
v1 formed by p3 and p4 will be larger than RWCD1, which
contradicts the fact that RWCD1 is a relative WCD at v1.
Hence, we have RWCD1 = RWCD2. 2

We can apply Theorem 2 to replace a subset of legal paths
P ⊆ P leg with Pbundle such that |Pbundle| ≤ |P | while
keeping the WCD unchanged. Although the conditions for
goal-equivalence and RWCD-equivalence are quite restric-
tive, they often hold in “passage” blocks in which all agents
simply go from entries to exits regardless of their goals. The
goal-equivalence permits minor deviations from the optimal
paths in these passage blocks.

Conclusions
This technical appendix provided the missing information in
our paper entitled “Block-Level Goal Recognition Design”
published in AAAI 2024. These missing information are the
pseudocodes of the algorithms and the definition of compact
path trees. We also provide an example showing how the
design subtree pruning rule works. Moreover, we presented
two new techniques to improve the block-level GRD algo-
rithms: collected blocks and legal path bundles. The former
merges several correlated blocks into one block to reduce
the search space of the GRD algorithms. The latter reduces
the number of legal paths by implicitly representing a set
of legal paths by a legal path bundle. Both ideas utilize the
properties of blocks to speed up the GRD algorithms. Blocks
could offer other properties that can be helpful to simplify



the GRD problems. In the future, we would like to discover
these properties for solving large-scale GRD problems.
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