
Dynamic Robot Chain Networks for Swarm Foraging

Dohee Lee1, Qi Lu2 and Tsz-Chiu Au1

Abstract— The objective of foraging robot swarms is to
search for and collect resources in an unknown arena as quickly
as possible. To avoid the congestion near the central collection
zone, we previously proposed an extension to the multiple-place
foraging in which robot chains are deployed dynamically so that
foraging robots can deliver to the robot chains instead of the
central collection zone. However, a robot chain can only reach
one location at a time, and congestion can occur at the end of
the robot chain. This paper presents an extension to dynamic
robot chains called dynamic robot chain networks, which extends
robot chains with branches, each of which reaches different
resource clusters. We formulate the problem of finding the
smallest dynamic robot chain networks as the Euclidean Steiner
tree problem and explain how Steiner trees can be utilized to
optimize the efficiency of foraging operations. We implemented
our foraging robot swarms in a simulator called ARGoS. Our
experiments showed that dynamic robot chain networks can
avoid obstacles and collect more resources when compared with
the original robot chain design.

I. INTRODUCTION

One important application of swarm robotics is foraging—
searching for resources such as minerals, water, and fuels
that are distributed in an arena and bringing them back
to a collection zone called central depot [1], [2]. Most
existing foraging swarm robot systems use decentralized
search-and-collection foraging strategies [3]–[8]. However,
some of these foraging systems suffer from congestion near
the central depot when many foraging robots return and
unload the collected resources at the central depot [8]. To
alleviate the congestion problem, Lu et al. proposed multiple-
place foraging systems, which utilizes helper robots called
dynamic depots to collect resources from foraging robots and
transport the resources to the central depot [6]–[8]. Although
dynamic depots can help reduce the number of robots near
the central depot, congestion still occurs in heavy traffic.
Previously, we proposed to replace dynamic depots with
dynamic robot chains, which are sequences of robots with
the ability to pass resources at a distance on them [9]. One
possible implementation of dynamic robot chains is based on
mobile conveyors [10]. A foraging robot can put resources
on the last robot in a robot chain and let the robot chain
pass the resources to the central depot. This approach can
dramatically reduce congestion near the central depot [9].

1Department of Computer Science and Engineering, Ulsan
National Institute of Science and Technology, South Korea.
{dohee,chiu}@unist.ac.kr

2Department of Computer Science, University of Texas at San Antonio,
USA. qi.lu@utsa.edu

Fig. 1: The prototype of a robot chain network formed by
mobile conveyor robots.

Fig. 2: A robot chain foraging system with four robot chain
networks. The blue dots are foraging robots, whereas the
magenta dots are robot-chain robots.

Dynamic robot chains, however, cannot eliminate conges-
tion since congestion can still occur near the last robots of
robot chains. When there are many resource clusters near the
end of a robot chain, several foraging robots have to deposit
the collected resources into the end of the robot chain.
Thus, the ends of robot chains become the new bottleneck
of the system. In this paper, we propose dynamic robot
chain networks, which extend the idea of dynamic robot
chains by having a network of robot chains that connect
to multiple resource clusters. By allowing robot chains to
have branches, the traffic near the end of a robot chain can
be distributed to several branches and congestion can be
avoided. More importantly, dynamic robot chain networks
can achieve higher throughput by having multiple endpoints
connecting to different resource clusters using fewer robots.
The prototype of a dynamic robot chain network formed by
mobile conveyor robots is shown in Fig. 1. We optimize the
number of robots on a robot chain network by computing
Euclidean Steiner trees with obstacle avoidance, which are
the minimum spanning trees for connecting to multiple
endpoints with the addition of Steiner points. We describe a
high-level controller which decides when we should add new
branches to an existing network and when we should relocate
a subtree of a network to the locations on the Steiner tree.
The experimental results in Sec. VIII show that multiple-
place swarm foraging systems based on robot chain networks

are more efficient than both dynamic depots and robot chains
with no branch.

The rest of this paper is organized as follows. After
presenting the related work, we define the foraging task in
Sec. III. Sec. IV, V and VI describe our foraging system in
detail. The experimental setups and results are presented in
Sec. VII and VIII. Finally, we conclude in Sec. IX.

II. RELATED WORK

In central-place foraging, robots collect resources scat-
tered in a large area and transported them to a central
collection zone [11], [12]. Hecker and Moses [13] devised
the stochastic central-place foraging algorithm (CPFA) for
robot swarms. Flanagan et al. [14] significantly improved
the foraging performance of CPFA by sharing the location
information of resources. Fricke et al. [15] presented a
distributed deterministic spiral search algorithm (DDSA) that
guarantees a complete search of the entire arena. Although
the DDSA outperforms the CPFA in simulation, the CPFA is
slightly better than the DDSA in physical experiments [16].

Inspired by foraging behavior observed in the polydomous
colonies of Argentine ants and wasps [17] with multiple
nests and spider monkeys with multiple sleep site [18],
Lu et al. [19], [20] proposed the multiple-place foraging
algorithm (MPFA), which is analogous to global courier and
transportation services in which many distributed warehouses
collect and distribute resources efficiently. Lu et al. [21]
improved the foraging performance of the MPFA by intro-
ducing the dynamic depots MPFAdynamic, in which depots
transport resources to the center directly. Pini et al. [22]
presented a static partitioning strategy for foraging robot
swarms. Ferrante et al. [23] uses Grammatical Evolution to
divide a foraging task into searching and delivering tasks.
Lee et al. [9] extended the work of MPFA with dynamic
depots in [21] by replacing dynamic depots with mobile robot
chains. Previously, robot chains have been used to localize
other robots by acting as a set of stationary beacons [24]
or as navigation to relay images of an environment [25].
However, our robot chains are used to transfer resources by
mobile conveyor lines [10] or delivery drones [26].

The Euclidean Steiner tree (EST) problem is an NP-
hard problem, but there is a polynomial-time approximation
scheme for finding a near-optimal solution in polynomial
time [27]. [28] presented an exact but inefficient algo-
rithm for the obstacle-avoiding EST problem. [29] proposed
a nature-inspired approach to compute the typology of
obstacle-avoiding Steiner trees. [30] proposed a heuristic
strategy for the problem of constructing a EST when a 2D
plane can be divided into polygonal regions. [31] proposed a
heuristic for the EST problem using a large scale of simulated
robot swarms. Our implementation of the EST solver is based
on the algorithm in [32] with some modifications to handle
obstacles.

III. FORAGING WITH ROBOT CHAIN NETWORKS

In a foraging task, a team of robots cooperates to collect
resources in an arena. Fig. 2 shows an example of an arena

Fig. 3: The sensory information collected by the lidar on a
robot. The red dotted line represents the range of the lidar.

in which resources are deposited in several resource clusters.
Besides, there are obstacles that hinder the robot’s visibility
and movement. Initially, the robots do not know the locations
of the resource clusters and the obstacles. The goal of the
robot team is to find as many resources as possible and carry
them back to the central depot.

A robot is an omnidirectional mobile robot with a gripper,
a lidar sensor, a wireless communication device, a resource
detection device, a resource-holder with limited storage
space, and a link forming component (e.g., conveyors). A
robot uses its lidar to detect the edges of the obstacles and
other robots within the lidar’s sensing range (see Fig. 3).
The resource detection device can detect the exact locations
of all resources within its sensing range. When the distance
between two robots is less than dmax, the two robots can use
their link forming components to form a link between them
such that one robot can send resources to the other robot via
the link. The capacity of a link is the maximum number of
resources that can move on the link simultaneously.

A robot chain is a sequence of robots in which every
pair of adjacent robots are linked together. A robot chain
network is a set of robot chains that join together in a tree-
like structure. To form a robot chain network, robots must
be capable of establishing links to three adjacent robots
to form Y-junctions. Three mobile conveyors can form a
one-way Y-junction by overlapping the endpoints of their
belts such that objects from two incoming belts can drop
on the outgoing belt. The problem of finding the minimum
size robot chain networks can be formulated as an obstacle-
avoiding Euclidean Steiner tree problem: given N points in
a 2D plane with obstacles, find a tree structure in the space
that connects all points by lines of minimum total length with
the help of newly-created points called Steiner points. In our
case, the N points are the locations of resource clusters, the
lines are robot chains, and the Steiner points are Y-junctions.
One nice theoretical result is that every vertex in a minimum
Steiner tree must have a degree of two or three [33], [34].
Hence, it is sufficient to consider Y-junctions only when
forming a robot chain network of minimum size.

At any time, a robot is in one of the four states: 1) the
mobile state, 2) the resource-collecting state, 3) the resource-
dumping state, and 4) the robot-chain state. In the mobile
state, a robot can move freely. When a robot arrives at a
resource, it can enter the resource-collecting state and use
its gripper to put resources in its resource-holder. After
collecting the resource, the robot enters the mobile state

again. When the robot arrives at an endpoint of a robot
chain network or the central depot, it can enter the resource-
dumping state to unload the resource and then enter the
mobile state again. When a robot is asked to establish a link
with other robots, it enters the robot-chain state and starts
forming links with the other robots. When a branch in a robot
chain network is disbanded, the links are retracted and the
robots enter the mobile state. At any time, a robot plays one
of the following roles: 1) exploring robots, 2) foraging robots
and 3) robot-chain robots. An exploring robot can only enter
the mobile state. A foraging robot can enter the mobile state,
the resource-collecting state, and the resource-dumping state.
A robot-chain robot can enter the mobile state and the robot-
chain state. A robot can change its role only when it is in
the mobile state.

An endpoint is the last robot of a branch that connects
to a resource cluster. Each foraging robot has a preferred
endpoint, which is typically the nearest endpoint at the
current position. A foraging robot can put its collected
resources to the preferred endpoint, and then the resource
will be transferred to the central depot via the network. If
the resource-holder of an endpoint is full or another foraging
robot is using the endpoint, the foraging robot has to wait
until the endpoint becomes available. The resource-holder of
an endpoint is full when congestion occurs on the network,
causing the resources to pile up to the endpoint. Congestion
is mainly caused by the limited capacity of the link on the
main branch that connects to the central depot. But this
congestion can be alleviated if resources can be transferred
quickly through the main branch. In our experiments, there
are four initial robot chain networks in the four quadrants of
an arena at the beginning.

IV. FORAGING ROBOTS’ BEHAVIOR

A foraging robot remembers the location of the last
resource cluster it visited and collects resources from the
cluster until there is no more resource in the cluster. When all
resources in a cluster have been collected, the foraging robot
will go to another cluster to collect resources or become an
exploring robot and explore the arena to find other resource
clusters and obstacles using the exploration strategy in [8].

Robots share their locations with the nearby robot, es-
pecially the adjacent robots on a robot chain. They also
share the locations of the resources and the obstacles they
know. The central depot acts as an information hub that
redirects information via robot chain networks. Unless a
robot is exploring a location that is far away from any robot
chain networks, it can receive the shared information from
the central depot instantly. Robots that are not close to any
network will have to get closer to the network from time to
time to exchange information with other robots.

When a robot discovers an obstacle, it will integrate the
information of the obstacle collected by its lidars (Fig. 3)
by updating a shared data structure called the obstacle map
(Fig. 4), which partitions the arena map into three kinds
of regions: 1) unknown regions, 2) empty regions and 3)
obstacle regions. In Fig. 4b, they are the black regions,

(a) A real environment (b) The obstacle map

(c) The visibility graph
(d) The visibility graph in

the empty regions

Fig. 4: The visibility graphs in the obstacle map.

the white regions, and the magenta regions, respectively.
Foraging robots use the obstacle map to navigate in the arena.
To visit a location, a foraging robot computes a visibility
graph in the obstacle map (Fig. 4c) and removes all edges
that are not in the empty regions (Fig. 4d). The foraging
robot moves along the shortest path to the destination in
the visibility graph. When moving toward the destination,
the foraging robot will update the visibility graph upon
getting more information about the unknown regions and
then recompute the shortest path. If there is no path to reach
the destination, the foraging robot will explore the unknown
region randomly until there is a path to the destination.

V. MODIFICATION OF ROBOT CHAIN NETWORKS
A robot chain network supports five modification opera-

tions: (1) adding a branch to an existing network, (2) deleting
a branch from an existing network, (3) relocating a subtree
in an existing network, (4) establishing a new network, and
(5) disbanding a network. A high-level controller in Sec VI
decides when to apply these operations. Typically, when a
new resource cluster is discovered, the high-level controller
will consider either adding a branch connecting an existing
network to the new resource cluster or relocating a subtree
in an existing network to include the new resource cluster as
a new endpoint in the network. When a resource cluster has
no more resources, the branch to the resource cluster will be
deleted. If all resource clusters at the endpoints of a network
are empty, the entire network will be disbanded. If some
resource clusters are not close to any existing networks, a
new network for these clusters will be established.

The relocation of subtrees relies on the solution to the
obstacle-avoiding EST problem. For each resource cluster
in a subtree π including the new resource cluster, we pick a
point within a distance Rend from the center of the cluster but
outside the cluster as an endpoint. The endpoint should be
between the center of the cluster and the network. Given the

coordinates of a set of endpoints and the obstacle map, we
first compute a nearly optimal Steiner tree that connects the
central depot to the endpoints while avoiding the obstacles.
We modified the EST solver in [32] to make it works with
obstacle avoidance using some heuristics in [29] and [30].
Second, we compute the target locations of the robots on
the edges of the Steiner tree. The target locations should
satisfy all physical constraints, such as the maximum link
distance and the Y-junction configurations. After computing
the target locations, the high-level controller will ask the
endpoints in π to stop receiving resources from foraging
robots and wait until all existing resources on the chain
leave π . Note that other parts of the network can continue
to function while relocating π . After that, the robot-chain
robots in π are disbanded and become foraging robots. Then
the set of foraging robots that are close to the target locations
moves to the target locations along the shortest paths in the
visibility graphs.

To encourage robots to explore the regions around the
new subtree, the robots are given a certain amount of
time, namely texplore, to freely explore the region near the
subtree while moving to the target locations. The key idea
of the exploration procedure is to maintain the current best
configuration of the subtree during the exploration and make
sure that there is enough time for robots to return to the last
best configuration before the allotted exploration time texplore
is expired. When robots collect new information about the
obstacles during exploration, the high-level controller will
recompute the Steiner tree and the target locations and then
ask the robots to move to the new target locations.

The operation of establishing a new network is the same as
the relocation of a subtree, except no existing subtree will be
disbanded and the subtree’s root is the central depot. Adding
a new branch is the same as the addition of new robot chains
using the visibility graph in Fig. 4 as discussed in [9].

VI. THE HIGH-LEVEL CONTROLLER

The foraging robots and the dynamics of robot chain
networks are managed by a high-level controller at the
central depot. The controller divides all robots into three
groups based on their roles as discussed in Sec III. An
exploring robot will move to the nearest unknown regions
in the obstacle maps as shown in Fig. 4, but visit the
nearest endpoints of any network for every period tinfo to
report the collected information. The foraging robots will be
evenly distributed to the endpoints of the networks and they
repeatedly collect resources from nearby resource clusters
and then dump the resources to the endpoints. The robot-
chain robots act upon receiving resources from the upstream
and pushing the resources downstream.

Robots can switch roles only when a modification of robot
chain networks occurs. The high-level controller considers
modifying any networks only at a fixed time interval tprotect.
No new modification can be made before the end of a
time interval to prevent modifications from happening too
frequently. At the end of a time interval, the controller checks
whether some branches or networks should be removed

and whether there are resource clusters that have not been
reached by any network. To reach these resource clusters,
the high-level controller has three options: adding some new
branches to an existing network, relocating a subtree in an
existing network, or establishing a new network. The last
option is selected only when the resource clusters are too far
away from existing networks.

We opt for building large robot chain networks with many
endpoints after setting aside a certain number of robots as
exploring robots. Hence, the high-level controller prefers
adding new branches instead of relocating a subtree. When
adding a new branch, some foraging robots have to convert
into robot-chain robots. As long as the average number
of foraging robots for each endpoint in a robot network
is not less than a given number Nforage, the addition of
new branches should be allowed; otherwise, the high-level
controller should relocate a subtree. Before relocating a
subtree, the controller calculates the number of robots that
are available to establish the new subtree. If the number of
robots is large enough for filling out the minimum Steiner
tree, the relocation proceeds; otherwise, the relocation is put
on hold until some other branches are disbanded and more
robots become available. Since the new Steiner tree can be
smaller than the subtree before relocation, some robot-chain
robots can become foraging robots after relocation.

VII. EXPERIMENTAL CONFIGURATIONS

To evaluate our robot chain network algorithm RCnetwrok,
we conducted four sets of experiments in Autonomous
Robots Go Swarming (ARGoS) [35]. In the first two ex-
periments, we compared our proposed algorithm RCnetwork
with the other two robot chain algorithms in [9], (RCno and
RCone). In RCno, robot chains can relocate close to multiple
resource clusters, but the length of robot chains does not
change. In RCone, the robot chains can be extended to the
center of multiple resource clusters. In the first experiment,
the arena size is 20m×20m. The number of clusters is 40,
and the shape of clusters is 5×5. The number of robots is
40, 50, 60, and 70. Initially, 4 robot chains are distributed
uniformly and 4 robots in each chain. The simulated foraging
time is 30 minutes. The exploration time of robots in robot
chains is 2 minutes and the frequency of relocation checking
is 6 minutes. For testing the flexibility of the proposed algo-
rithm, we conducted the second experiment where the arena,
resources, and robot swarm size are larger. The experimental
setup is summarized in Table I.

In the third experiment, we measured how the frequency
of network modification and the frequency of robot chains’
relocation tprotect affect the foraging performance in the
20 × 20 arena with obstacles. The experimental setup is
summarized in Table II. In the last experiment, we measured
how the exploration time texplore affects the modification of
the networks or robot chains in the 20m× 20m arena with
obstacles. We measure the total distance between the last
robots of robot chains and the closest clusters of resources.
Three groups of experiments were conducted based on the

TABLE I: The Configuration of Experiments 1 & 2

Arena Size (m×m) 20×20 30×30
Number of resource 1000: (40×5×5) 2250: (90×5×5)
Number of robots 40, 50, 60, 70 60, 80, 100, 120

Number of robots in each 4 9initial robot chain
Foraging time (minute) 30 30

texplore (minute) 2 2
tprotect (minute) 6 6

TABLE II: The Configuration of Experiments 3
Arena Size (m×m) 20×20
Number of resource 1000
Number of robots 40, 60, 80

Foraging time (minute) 30
Number of obstacles 4, 8, 16, 32

Percentage of robots in the 30%initial robot chains
texplore (minute) 2
tprotect (minute) 3, 6, 12, 24, 30

TABLE III: The Configuration of Experiment 4
Arena Size (m×m) 20×20
Number of obstacles 2, 4, 6, 8
Number of robots in 4, 5, 6each robot chain

texplore (s) 30, 60, 120, 240

number of robots in each robot chain. The experimental setup
is summarized in Table III.

VIII. EXPERIMENTAL RESULTS

The foraging performance is the number of resources
collected and delivered to the central collection zone. The
collision time is the time robots spend to avoid collisions
with other robots and the boundary of the arena. We checked
whether the foraging performance varies systematically with
different configurations and statistically analyzed the results.
Each data set in the figures is an average of 30 runs, and
each error bar indicates 95% confidence intervals.

Fig. 5 demonstrates the foraging performance of all three
algorithms in Experiment 1. The foraging performance in-
creases as the number of robots increases. When the number
of robots is 40, all performances are low and similar. When
the number of robots is 60, the performance of RCnetwork
outperforms other algorithms. When the number of robots is
70, the performance of RCnetwork is 13.6% higher than RCone
and 19.5% higher than RCno.

0

200

400

600

800

40 50 60 70
Number of Robots

N
um

be
r o

f
Co

lle
ct

ed
 R

es
ou

rc
es

 56-M 56M-N 56-N8OMPQ

Fig. 5: Foraging performance in Experiment 1.

Fig. 6 compares the collision time of all three algorithms in
Experiment 1. The collision time increases as the number of

robots increases. The difference is higher when the number
of robots is 70, the collision time in the RCnetwork is 4.7%
shorter than the time in RCone and 18.6% shorter than RCno.

0
1000
2000
3000
4000
5000

40 50 60 70
Number of Robots

Co
lli

sio
n

Ti
m

e
(s

ec
on

ds
)

56-M 56M-N 56-N8OMPQ

Fig. 6: The collision time of each swarm in Experiment 1.

Compared to the performance in Experiment 1, Fig. 7
demonstrates the same trend of the foraging performance in
Experiment 2. When the number of robots is 120, the per-
formance of RCnetwork outperforms other algorithms. When
the number of robots is 80, the performance of RCnetwork
is 14.9% higher than RCone and 21.0% higher than RCno.
Fig. 8 also demonstrates the same trend of the collision time
in Experiment 2. When the number of robots is 120, the
collision time in the RCnetwork is 4.5% shorter than the time
in RCone and 17.1% shorter than RCno.

0
200
400
600
800

1000

60 80 100 120
Number of Robots

N
um

be
r o

f
Co

lle
ct

ed
 R

es
ou

rc
es

 56-M 56M-N 56-N8OMPQ

Fig. 7: Foraging performance in Experiment 2.

0
3000
6000
9000

12000
15000

60 80 100 120
Number of Robots

Co
lli

sio
n

Ti
m

e
(s

ec
on

ds
)

56-M 56M-N 56-N8OMPQ

Fig. 8: The collision time of each swarm in Experiment 2.

Fig. 9 demonstrates the foraging performance in Exper-
iment 3. The foraging performance of the robot chains or
networks decreases as the number of obstacles increases.
When the number of robots is 40, the trend of the perfor-
mance is not obvious. When the number of robots is 60 and
80, the performance with tprotect = 3 is significantly lower
than others. In all cases, the performance with tprotect = 6

is slightly better than the performance with tprotect = 12, but
always better than others.

0
200
400
600

4 8 16 32

0
200
400
600

4 8 16 32

0
200
400
600

4 8 16 32

40
5
9:
9;
<

60
5
9:
9;
<

80
5
9:
9;
<

N
um

be
r o

f C
ol

le
ct

ed
 R

es
ou

rc
es

Number of Obstacles

3 $KL< 6 $KL< 12 $KL< 30 $KL<24 $KL<

Fig. 9: Foraging performance using different tprotect in Ex-
periment 3.

Fig. 10 demonstrates the performance of network mod-
ifications and robot chains’ relocation in Experiment 4.
The performance has the same trend in all three groups of
experiments. The total distance d between the last robots of
robot chains and the closest clusters increases as the number
of obstacles increases. The shorter exploration time results
in a longer distance d. The robot chain algorithm with the
known obstacle map always has the best performance. When
the number of robots in a robot chain is 6 and the number of
obstacles is 8, the distance using the robot chain algorithm
with obstacle maps is 35.8%, 52.6%, 181.2%, and 274.6%
shorter than the distance using the robot chain algorithm
with the exploration time, 240, 120, 60, and 30 seconds,
respectively.

0

2

4

2 4 6 8

0

2

4

2 4 6 8

0

2

4

2 4 6 8

4
59
:9
;<

5
59
:9
;<

6
59
:9
;<

Di
st

an
ce

 B
($
)

Number of Obstacles

30< 60< 120< E:<;FGHI 'FJ240<

Fig. 10: Relocating performance using different texplore in
Experiment 4.

IX. DISCUSSION AND FUTURE WORK

In [9], we have already demonstrated that the dynamic
robot chain algorithm outperforms the MPFA with dynamic

depots. In this paper, we designed tree-like robot chain
networks for foraging robot swarms, based on obstacle-
avoiding Euclidean Steiner trees. The collected objects can
be transported on the robot chain to the central collection
zone. Compared to the existing dynamic depot foraging
systems, our network formation can overcome two major
limitations of the central place foraging algorithm (CPFA):
congestion in transportation and the long travel distance
between the location of one depot and the locations of
multiple clusters. We presented the robot chain network al-
gorithm RCnetwork and described the modification procedure
of subtrees. Our experiments (Fig. 5 and Fig. 7) show that
RCnetwork outperforms other two robot chain algorithms with
no or one single branch, RCno and RCone, respectively.

The reasons for the superior performance of robot chain
networks are as follows. When there are multiple discovered
clusters, one robot chain is insufficient to serve the foraging
in multiple clusters. When there are no extended branches,
robots need to travel between the multiple clusters and the
location of the last robot in the robot chain. Robots collide
with each other as in the MPFA with dynamic depots. When
there are multiple branches to the clusters, many robots are
in the robot chains and branches, and a smaller number of
foraging robots travel in the arena. Therefore, the collision
times in RCnetwork are lower (Fig. 6 and Fig. 8). A real-time
adaptive strategy is a key component of RCnetwork since it can
create multiple branches that connect to multiple clusters.
This reduces the travel time of foraging robots and hence
increases the foraging performance.

The foraging performance in the third experiment (Fig. 9)
indicates that the frequency of network modification or robot
chain’s relocation should be selected carefully. The robot
chain, either with a high relocation frequency or without
relocation, has a low performance. The relocation is efficient,
but there is a cost of relocation. There are tradeoffs between
the relocation and the cost. The results in the last experiment
indicate the exploration time is also critical in the modifica-
tion. The longer exploration time results in better robot chain
networks, but the rate of improvement decreases.

Thus, by using dynamic robot chain networks that adapt to
the distribution of resources, RCnetwork is an efficient solution
that mitigates the issue of bottlenecks and improves the
foraging performance. This work shows that dynamic robot
chain networks can significantly enhance the transportation
performance in foraging swarm robotics systems. The advan-
tages of this novel approach are: 1) it provides more efficient
transportation than existing no branch or single branch robot
chain algorithms; 2) it has less collision time among robots;
and 3) it is adaptive to local environments. In the future,
we will design more efficient robot chain networks to avoid
obstacles in more complex environments.

ACKNOWLEDGMENTS

This work has been taken place at UNIST and was
supported by NRF (2016R1D1A1B0101359816 and
2022R1A2C10121681) and UNIST (1.210036.01 and
1.220048.01).

REFERENCES

[1] W. Liu, “Design and modelling of adaptive foraging in swarm robotic
systems,” Ph.D. dissertation, Faculty of Environment and Technology,
University of the West of England, Bristol, 2008.

[2] W. Liu and A. F. T. Winfield, “Modeling and optimization of adaptive
foraging in swarm robotic systems,” International Journal of Robotics
Research, vol. 29, no. 14, pp. 1743–1760, Dec. 2010.

[3] Wenguo Liu, A. F. Winfield, Jin Sa, Jie Chen, and Lihua Dou,
“Towards energy optimization: Emergent task allocation in a swarm
of foraging robots,” Adaptive Behavior, 2007.

[4] E. Castello, T. Yamamoto, F. D. Libera, W. Liu, A. F. Winfield,
Y. Nakamura, and H. Ishiguro, “Adaptive foraging for simulated and
real robotic swarms: the dynamical response threshold approach,”
Swarm Intelligence, 2016.

[5] J. P. Hecker and M. E. Moses, “Beyond pheromones: evolving error-
tolerant, flexible, and scalable ant-inspired robot swarms,” Swarm
Intelligence, vol. 9, no. 1, pp. 43–70, 2015.

[6] Q. Lu, M. E. Moses, and J. P. Hecker, “A Scalable and Adaptable
Multiple-Place Foraging Algorithm for Ant-Inspired Robot Swarms,”
Workshop on On-line decision-making in multi-robot coordination,
2016 Robotics Science and Systems Conference, arXiv:1612.00480,
2016.

[7] Q. Lu, J. P. Hecker, and M. E. Moses, “The MPFA: A Multiple-
Place Foraging Algorithm for Biologically-Inspired Robot Swarms,”
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2016.

[8] Q. Lu, J. P. Hecker, and M. Moses, “Multiple-place swarm foraging
with dynamic depots,” Autonomous Robots, vol. 42, no. 4, pp. 909–
926, 2018.

[9] D. Lee, Q. Lu, and T.-C. Au, “Multiple-place swarm foraging with
dynamic robot chains,” in ICRA, 2021, to appear.

[10] D. Lee and T.-C. Au, “Automatic configuration of mobile conveyor
lines,” in IEEE International Conference on Robotics and Automation
(ICRA), 2016, pp. 3841–3846.

[11] W. Liu, A. F. Winfield, J. Sa, J. Chen, and L. Dou, “Towards energy
optimization: Emergent task allocation in a swarm of foraging robots,”
Adaptive behavior, vol. 15, no. 3, pp. 289–305, 2007.

[12] E. Castello, T. Yamamoto, F. Dalla Libera, W. Liu, A. F. Winfield,
Y. Nakamura, and H. Ishiguro, “Adaptive foraging for simulated and
real robotic swarms: the dynamical response threshold approach,”
Swarm Intelligence, vol. 10, no. 1, pp. 1–31, 2016.

[13] J. P. Hecker and M. E. Moses, “Beyond pheromones: evolving error-
tolerant, flexible, and scalable ant-inspired robot swarms,” Swarm
Intelligence, vol. 9, no. 1, pp. 43–70, 2015.

[14] T. P. Flanagan, K. Letendre, W. R. Burnside, G. M. Fricke, and M. E.
Moses, “Quantifying the effect of colony size and food distribution
on harvester ant foraging,” PloS one, vol. 7, no. 7, p. e39427, 2012.

[15] G. M. Fricke, J. P. Hecker, A. D. Griego, L. T. Tran, and M. E. Moses,
“A distributed deterministic spiral search algorithm for swarms,”
IEEE/RSJ International Conf. on Intelligent Robots and Systems
(IROS), 2016.

[16] Q. Lu, A. D. Griego, G. M. Fricke, and M. E. Moses, “Comparing
physical and simulated performance of a deterministic and a bio-
inspired stochastic foraging strategy for robot swarms,” in Intl. Conf.
on Robotics and Automation (ICRA), May 2019, pp. 9285–9291.

[17] T. P. Flanagan, N. M. Pinter-Wollman, M. E. Moses, and D. M.
Gordon, “Fast and flexible: Argentine ants recruit from nearby trails,”
PLOS ONE, vol. 8, no. 8, pp. 1–7, August 2013.

[18] C. A. Chapman, L. J. Chapman, and R. McLaughlin, “Multiple central
place foraging by spider monkeys: Travel consequences of using many
sleeping sites,” Oecologia, vol. 79, no. 4, pp. 506–511, 1989.

[19] Q. Lu, M. E. Moses, and J. P. Hecker, “A scalable and adaptable
multiple-place foraging algorithm for ant-inspired robot swarms.”
Robotics Science and Systems (RSS) workshop on On-line decision-
making in multi-robot coordination, 2016.

[20] Q. Lu, J. P. Hecker, and M. E. Moses, “The MPFA: A multiple-place
foraging algorithm for biologically-inspired robot swarms,” IEEE/RSJ
International Conf. on Intelligent Robots and Systems (IROS), 2016.

[21] Q. Lu, J. Hecker, and M. Moses, “Multiple-place swarm foraging with
dynamic depots,” Autonomous Robots, vol. 42(4), pp. 909–926, 2018.

[22] G. Pini, A. Brutschy, A. Scheidler, M. Dorigo, and M. Birattari,
“Task partitioning in a robot swarm: Object retrieval as a sequence
of subtasks with direct object transfer,” Artificial life, vol. 20, no. 3,
pp. 291–317, 2014.

[23] E. Ferrante, A. E. Turgut, E. Duéñez-Guzmán, M. Dorigo, and
T. Wenseleers, “Evolution of self-organized task specialization in robot
swarms,” PLoS Comput Biol, vol. 11, no. 8, pp. 1–21, 2015.

[24] S. Nouyan, A. Campo, and M. Dorigo, “Path formation in a robot
swarm,” Swarm Intelligence, vol. 2, no. 1, pp. 1–23, 2008.

[25] P. M. Maxim, W. M. Spears, and D. F. Spears, “Robotic chain for-
mations,” International Federation of Automatic Control Proceedings
Volumes, vol. 42, no. 22, pp. 19–24, 2009.

[26] F. Wang, P. Liu, S. Zhao, B. M. Chen, S. K. Phang, S. Lai, T. H. Lee,
and C. Cai, “Guidance, navigation and control of an unmanned heli-
copter for automatic cargo transportation,” in IEEE Xplore Proceedings
of the 33rd chinese control conference, 2014, pp. 1013–1020.

[27] P. Crescenzi, V. Kann, M. Halldórsson, M. Karpinski, and G. Woeg-
inger, “Minimum geometric steiner tree,” A Compendium of NP
Optimization Problems, 2000.

[28] M. Zachariasen and P. Winter, “Obstacle-avoiding euclidean steiner
trees in the plane: an exact algorithm,” in Workshop on Algorithm
Engineering and Experimentation, 1999, pp. 286–299.

[29] V. Parque and T. Miyashita, “Obstacle-avoiding euclidean steiner trees
by n-star bundles,” in IEEE 30th International Conference on Tools
with Artificial Intelligence (ICTAI), 2018, pp. 315–319.

[30] L. Garrote, L. Martins, U. J. Nunes, and M. Zachariasen, “Weighted
euclidean steiner trees for disaster-aware network design,” in Interna-
tional Conference on the Design of Reliable Communication Networks
(DRCN), 2019, pp. 138–145.

[31] H. Hamann and H. Wörn, “Aggregating robots compute: An adaptive
heuristic for the euclidean steiner tree problem,” in From Animals to
Animats 10, M. Asada, J. C. T. Hallam, J.-A. Meyer, and J. Tani, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 447–456.

[32] W. D. Smith, “How to find steiner minimal trees in euclidean d-space,”
Algorithmica, vol. 7, pp. 137–177, 1992.

[33] E. N. Gilbert and H. O. Pollak, “Steiner minimal trees,” SIAM Journal
on Applied Mathematics, vol. 16, no. 1, pp. 1–29, 1968.

[34] F. K. Hwang, D. S. Richards, and P. Winter, “The steiner tree problem,”
Annals of Discrete Mathematics, vol. 53, 1992.

[35] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Bram-
billa, N. Mathews, E. Ferrante, G. Di Caro, and F. Ducatelle, “ARGoS:
a modular, parallel, multi-engine simulator for multi-robot systems,”
Swarm intelligence, vol. 6, no. 4, pp. 271–295, 2012.

