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Abstract— Many interactions between humans and robots are
cooperative, but humans can easily make mistakes that cause
failure. A human-robot system is fail-safe if the robots can steer
the system to a safe state after a human error occur. However,
the success of this emergency maneuver depends on how quickly
the system generates a backup path (i.e., a motion plan) for the
robots. In this paper, we describe a new neural network model
that can be used to speed up the generation of backup paths for
robots in emergency situations. To test our idea, we consider
a cooperative transportation task in which a human and a
robot move a rectangular object from one location to another.
We collected training data from a simulation in which human
deviates from his intended path. Then we train our machine
learning model using the backup motion plans generated by
RRT in these emergency situations. The model can be utilized
by a modified RRT algorithm to speed up the generation of
backup paths for new emergency situations. Our experimental
results shows that our approach can speed up the generation
of backup paths by an order of magnitude.

I. INTRODUCTION

A human-robot system is fail-safe if the robots can find
ways to steer the system to a safe state and avoid catastrophic
consequences when human errors occur. However, if the
emergency maneuver cannot be found in a short time, the
human-robot system cannot guarantee fail-safe. In this paper,
we propose a machine learning model for speeding up the
process of computing a backup path—an emergency maneu-
ver in form of a motion plan—in a cooperative transportation
task in which a human and a robot move a table from one
location to another together in an office environment. More
specifically, we propose (1) a new deep neural network model
called GuidanceNet that learns to generate backup paths from
local maps and derived paths of a human, and (2) a modified
RRT algorithm that adapts a backup path generated by the
GuidanceNet model to generate a new backup path that is
more robust when a human derived from its intended path.
Our experiment showed that our approach can speed up
the search for backup paths by an order magnitude when
compared with generating backup paths from scratch.

II. RELATED WORKS

There have been many works on using machine learn-
ing to enhance sampling-based motion planners by bias-
ing the sampling process. Zucker and Paliwal [6] uses
reinforcement learning to bias the sampling distribution of
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Fig. 1: The architecture of the GuidanceNet model.

RRTs in workspace. Ichter et al. [3] took advantage of
a conditional variational autoencoder (CVAE) to learn a
sampling distribution from demonstrations, and then used
this distribution to bias sampling. Recently, researchers start
to consider using deep learning to guide the sampling process
in motion planning. Recurrent neural networks (RNNs) has
been immensely successful in many tasks that relate to
sequence processing including trajectory prediction [1]. Gao
et al. [2] introduces Intention-Net, which simultaneously uses
two CNNs to extract features from several types of input
data including camera images, local paths, and intention
to generate a sequence of actions for mobile robots during
replanning. Intention-Net uses fully-connected layers to infer
the actions from the extracted features. By contrast, we
adopt a type of RNNs called bidirectional recurrent neural
networks (Bi-RNNs), which take the past and future of
sequence into account [5]. More specifically, we opt for
bidirectional long short term memory (Bi-LSTM) to generate
a guidance sequence of actions for our robot to follow a
human trajectory while moving a table.

III. PROBLEM DEFINITION

In a 2D workspace W with a set of obstacles Bi (i =
1, ...,m), a human and a robot cooperatively transport a
rigid rectangular object by holding the object at two fixed
grasp points, also known as pivot points [4]. The robot
and human positions are pr = (xr, yr) ∈ R2 and ph =
(xh, yh) ∈ R2, respectively. The object, together with the
human and the robot, forms a human-object-robot systemM.
The configuration space C for the human-object-robot system
is defined by a triple q = (xh, yh, θ), where (xh, yh) is the
position of the center of the system and θ is the orientation of
the system. We can construct a function g : R4 7→ R3 which
maps a tuple (xh, yh, xr, yr) to a configuration (xh, yh, θ). A
joint motion plan forM is a pair of motion plans, one for the
human and the other for the robot, that moves the human-
object-robot system from an initial configuration to a goal



configuration without colliding with any obstacle. During the
transportation, a human may deviate from the given joint
motion plan and follow a deviated path {p(0)

h , . . . ,p
(T )
h }

instead, for a period of time T . Our goal is to generate a
backup plan {p(0)

r , . . . ,p
(T )
r } for the robot in response to

the given deviated path such that no collision occurs.

IV. GUIDANCENET

As shown in Fig. 1, GuidanceNet has three inputs: (1) an
initial configuration qdi = (x

(0)
h , y

(0)
h , θ(0)) of the human-

object-robot system; (2) a sequence of human’s positions
in the deviated path {p(0)

h , ...,p
(T )
h }; and (3) a gray scale

image of a 2D local floor map. The size of this local map
should be large enough to contain the given human path, but
it can be larger. Given these inputs, GuidanceNet generates
the orientation of the system at each time step: o(t) =
θ(t) ∈ [0, 2π], for t ∈ (0, T ]. The CNNs in GuidanceNet,
which consists of two convolutional layers and a pooling
layer, extracts a feature vector f of length 2034 from a 2D
image of a local map. The first and the second convolutional
layers used 32 filters and 64 filters, respectively, whose size
is 3 × 3 with stride of 1. The feature vector f , the initial
orientation θ(0), and the position of the human p

(t)
h at time

t in a deviated path are concatenated to become an input
z(t) of the Bi-LSTM model. The hidden recurrence layer h
propagates information forward, while the hidden recurrence
layer g propagates information backward in time. The output
is a linear combination of h and g. The loss function for
training is the mean square error of output θ(t).

We cannot directly use the sequence {θ̂(0), . . . , θ̂(T )} gen-
erated by GuidanceNet as a backup path since the sequence
can easily lead to collision. But this sequence can be used
to speed up the search process in RRT. To this end, we
developed a modified RRT algorithm to generate a motion
plan for robots using the actual local map at the point of
deviation of the intended path. Our modified RRT algorithm
uses the sequence generated by GuidanceNet as a sampling
guidance in order to reduce the search time. The idea is to
give a higher priority to sample configurations that are close
to the ones derived from the sequence in the sampling step
in RRT.

V. EXPERIMENTAL RESULTS

We compared our approach with the one that does not use
a machine learning model to guide the sampling process in
RRT. To train our model, we used three 2-D floor plans of
actual office environments of size 150×150m2. We randomly
cropped 60 local maps of size 30 × 30m2 from two of the
three maps then sampled 500 initial configurations from each
local map. For each initial configuration, 10 deviated paths
of human were obtained by drawing 10 line segments with
length l ∈ {2, 3, 4, 5, 6} and the human moved 1 unit of
length per 1 time step along these line segments. For each
deviated path, we used RRT to find a backup path for the
robot. Then a sample in our dataset consisted of a local map
of size 30 × 30, an initial configuration of the system, and
a derived path. The label of a sample is the backup path.
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Fig. 2: The length of the deviated path versus the execution
time of the RRT algorithms.

GuidanceNet was implemented in Keras with Tensorflow
backend, running on a computer with a Intel Core i7 4GHz
CPU and GeForce GTX 1080 Ti graphics card. GuidanceNet
was trained with 50 epochs and the batch of size 25 for each
map. Adam optimizer was used with a 0.001 learning rate,
whereas β1 = 0.9 and β2 = 0.999. In the test phase, we
cropped 30 local maps of size 30 × 30 from the third 2-D
map which was not used in the training process. Once again,
we generated 30 derived paths for 30 randomly chosen initial
configurations. Then we used our modified RRT algorithm
to find a backup path for the robot, and the execution time of
the algorithm was recorded. Fig. 2 shows that our approach
outperforms RRT in terms of the execution time by an order
of magnitude.

VI. SUMMARY AND FUTURE WORK

This paper presents a machine learning model called
GuidanceNet for speeding up the generation of backup paths
in cooperative transportation of human-robot teams. In the
future, we intend to extend our model to generate recovery
paths that can reach the goal configuration in addition to
collision avoidance.
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