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Abstract— In multi-drone systems such as drone light shows,
drones move in formation while avoiding collisions. However,
few existing formation planning algorithms consider the wind
fields of drones during planning. Since the wind field effect
is prominent when drones have to fly close to each other,
we cannot ignore the effect during planning. In this paper,
we extend the reservation system in autonomous intersection
management for grid-based formation planning by including
a new type of reservation called non-exclusive reservations
specifically for handling wind fields. We train a deep learning
model to predict the deviation of a drone’s trajectory when
the drone enters the wind field of another drone and then
use the reservation grid to prevent collision. Based on the
reservation system, we develop a new formation planning
algorithm that focuses on adjusting the start times of motion
plans to avoid collision. Our experimental results show that
trajectory prediction can help make better decisions in task
assignments for minimizing makespans.

I. INTRODUCTION

In multirobot systems, robots often move in formation
while avoiding collisions. A good example is drone light
shows, in which a group of drones, each equipped with a
light source, forms a sequence of light patterns in a night
sky (see Fig. 1). The performance of a drone light show
depends on how quickly the drones can change from one
formation to another. There are many works on controlling
a team of robots to form and maintain a formation while the
robots move together (e.g., [32]). We consider the formation
planning problem in which a planner generates formation
motion plans for drones. The formation plan ensures all
drones can reach their destinations while the makespan (i.e.,
the longest execution time of the motion plans) is minimized.

A unique challenge in multi-drone systems is that drones
can generate strong wind below and around the drones,
affecting other drones. Even if a drone does not crash
immediately when it enters another drone’s wind field, it
can be pushed away, causing the drone to deviate from its
intended trajectory. Since the region affected by a drone’s
wind field can be quite large, a multi-drone planning system
cannot ignore the effect of wind fields during planning,
especially when drones have to fly close to each other. This
is essentially true when we want to achieve a high pixel
density in drone light shows.

In this paper, we propose utilizing a reservation grid to
handle wind fields during formation planning. The idea is
similar to the reservation system in autonomous intersection
management (AIM), which is used to coordinate autonomous
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Fig. 1: A drone formation in
a drone light show.2

Fig. 2: Cross sections of the
safety buffer (the magenta re-
gion) and the wind buffer
(the light blue region).

vehicles at intersections to achieve an ultra-low traffic de-
lay [5], [12]. In AIM, a vehicle has to reserve the set of
space-time tiles on its trajectory in an intersection before
it can enter the intersection. Collision avoidance can be
achieved by ensuring that no two vehicles reserve the same
tile. However, this reservation system is too restrictive for
handling the wind fields since it is acceptable for the wind
fields of two drones to overlap. Moreover, we should allow
drones to enter the wind fields of other drones when it is
safe to do so. Since the reservation system in AIM cannot
handle wind fields properly, we propose an extension of the
reservation system that allows non-exclusive reservations for
the cells in the wind fields, such that drones can fly closer
to each other and more drones can fit into the same space.

The reservation grid imposes constraints to prevent col-
lisions and helps detect a drone entering the wind field of
another drone. Instead of forbidding drones from entering
any wind field, we trained a neural network model to predict
drones’ trajectories under the influence of wind fields. Then,
the deviated trajectories are used to make reservations in
the reservation grid such that collision can be avoided. This
approach allows drones to fly even closer to each other
temporarily to reduce the makespan.

To illustrate the necessity of wind field modeling, we
devised a new formation planning algorithm that uses goal
swapping as in [32]. We show that the goal swapping rule can
avoid making wrong decisions that increase the makespan if
it takes the deviated trajectories into account.

In summary, the contributions of this paper are:
• We extend the reservation system for AIM with a new

type of reservation called non-exclusive reservations for
handling wind buffers during formation planning.

• We develop a formation planning algorithm that avoids
collision by adding time delays to the start times of the
predefined motion plans. To the best of our knowledge,
we are the first to propose adjusting the start times
of motion plans only to avoid collision. We state the



sufficient condition under which this adjustment exists.
• We trained a neural network model to predict the devi-

ated trajectories under the influence of the wind fields
of other drones. We show that trajectory prediction can
improve the performance of goal swapping.

This paper is organized as follows. After presenting the
related work in Sec. II, we define our formation planning
problem in Sec. III. Next, we discuss what safety buffers
and wind buffers in Sec. IV, and how to utilize them in the
reservation grid in Sec. V. After that, we discuss how we use
deep learning to model deviated trajectories in Sec. VI. Then,
we describe our formation planning algorithm with goal
swapping in Sec. VII. Finally, we present our experimental
results in Sec. VIII and conclude this paper in Sec. IX.

II. RELATED WORK

Our multi-drone formation planning problem is a for-
mation reconfiguration problem, which aims to find a for-
mation plan that transforms an initial formation configu-
ration into a final configuration [13]. A popular approach
for formation reconfiguration is the artificial potential field
(APF) method [16], [19], [28]. Zhou et al. used buffered
Voronoi cells formed with locations of all peer drones to
effectively intercept and box all control commands within the
cells [40], an approach used by the Crazyflie platform [25].
Reciprocal n-body collision avoidance selects a safe veloc-
ity for an agent from observed peer velocities [15], [30].
Other collision avoidance approaches are chance-constrained
collision avoidance for MAVs [41], bayesian policy opti-
mization with model predictive control [4], particle swarm
optimization [37], and control barrier functions [33], [36].
However, these approaches have no long-term planning for
more complicated formation reconfiguration.

Some systems use decentralized approaches for formation
reconfiguration. Alonso-Mora et al. presented a method
based on optimal reciprocal collision avoidance (ORCA),
which uses a global cost function minimization to assign
target velocity and goal points to drones [3]. Bajaj and Rao
presented a divide and conquer approach along with an edge
following heuristic to fill the space in to display a shape
while preventing oscillatory behavior and gridlock [7]. Meng
et al. described gene regulatory networks with virtual DNA
encoding target formation that diffuses information to other
members of the swarm [20]. Wang and Rubenstein proposed
a decentralized multi-agent algorithm called Walk, Stop,
Count, and Swap that relies on swaps of goals between peers
to resolve gridlocks [32]. They also used a local pairwise goal
swap technique among the members of a swarm to reduce
a cost function. Decentralized approaches typically use less
computational resources and are robust against incomplete
modeling of agents’ behavior. However, they could be less
efficient when compared with centralized approaches.

Some multiagent planning algorithms can overcome the
weakness of reactive control and decentralized approaches.
Yu and LaValle proposed planning optimal paths for multiple
robots using integer linear programming models that opti-
mize for makespan or distance traveled [39]. They also pro-

posed a vertex ordering structure with a scheduling algorithm
for distributed distance optimal formation path planning [38].
Nar and Kotecha proposed an optimal waypoint assignment
algorithm for drone light show formations.

Some works exploit local wind fields for UAV trajec-
tory planning [22]. Lawrance et al. focused on mapping
local wind fields for autonomous soaring for gliders [17].
Achermann et al. trained a neural network to predict local
wind fields and used it in a sampling-based planner [1].
Chakrabarty et al. used a kinematic tree planner for time-
varying complex wind fields [8]. Wirth et al. used dynamic
programming for the planning process involving winds and
solar radiation [34]. Chung et al. presented thermal wind
field exploitation for gliders for reinforcement learning [9].

A feature of the reservation grid is the discretization
of space and time. This feature is similar to occupancy
grids [29], but our work is closely related to the grid-based
reservation system in AIM [5], [6], [12], [26]. Wu et al. pro-
posed a data structure called stacked reservation grid (SRG)
for motion planning [35]. Lattice-based motion planners go
one step further to discretize the state of robots [10], [11].

III. THE FORMATION PLANNING PROBLEM

Let V be a set of n drones. A pose ρ for a drone ν ∈ V
is the position and the orientation of ν in the workspace.
In a 3D workspace, ρ is (x, y, z, θx, θy, θz), where (x, y, z)
is the coordinate of the center of ν and θx, θy , and θz are
the pitch, yaw, and roll rotations of ν. A formation F for
V is {ρ1, ρ2, . . . , ρn}, where ρi is a pose for νi ∈ V , for
1 ≤ i ≤ n. A motion plan π for a drone ν is a sequence
of control commands for controlling ν to move along a
trajectory Traj[π]. A formation plan is Π = {πi}1≤i≤n,
where πi is a motion plan for νi ∈ V . The execution of
the motion plans in Π does not have to start at the same
time. A schedule Γ for Π is {ti}1≤i≤n, where ti ≥ 0 is the
start time of the execution of πi. A timed formation plan for
V is a pair (Π,Γ). Let |Traj[π]| be the length of the trajectory
according to π, which is the time difference between the start
time and the end time of the execution of π. The makespan
of (Π,Γ) is makespan(Π,Γ) = max1≤i≤n{ti + |Traj[πi]|},
which is the duration of the execution of Π given Γ.

At any time, a drone ν has a safety buffer and a wind
buffer (see Fig. 2). A safety buffer is a 3D region around ν
that is used to keep ν from flying too close to other drones.
A wind buffer is a 3D region in the wind field generated by
ν such that the wind speed at any point in the wind buffer
is larger than a given threshold. The shapes of these buffers
depend on the speed and the heading of a drone. We will
discuss the modeling of these buffers in Sec. IV.

Given a timed formation plan (Π,Γ), let ∂i and ξi be the
sequence of safety buffers and the sequence of wind buffers
of νi ∈ V , respectively, when νi flies along the trajectory
according to the motion plan πi starting at time ti. The
timespans of the buffer sequences begin at time 0 and end at
time tend = makespan(Π,Γ). We say two buffer sequences
overlap if and only if there exists a time t at which the
buffers at time t overlap. We define the buffer profile of νi



given πi and ti as a pair Bufi = (∂i, ξi). We say Bufi and
Bufj are fully compatible if and only if 1) ∂i and ∂j do not
overlap, 2) ∂i and ξj do not overlap, and 3) ∂j and ξi do
not overlap. These conditions state that the safety buffer of
a drone cannot overlap with the safety buffer and the wind
buffer of another drone at any time. However, they allow the
overlap of the wind buffers in ξi and ξj . We say Bufi and
Bufj are partially compatible if and only if ∂i and ∂j do
not overlap. In this work, it is sufficient to consider partial
compatibility since we allow drones to enter the wind fields.

A timed formation plan (Π,Γ) is valid if and only if
the buffer profiles of every pair of drones are partially
compatible. We define the drone formation planning problem
as follows. Given 1) a set V of n drones, 2) an initial for-
mation F0, and 3) a goal formation Fgoal, find a valid timed
formation plan (Π,Γ) such that tend = makespan(Π,Γ) is
minimized while the formation at time tend is Fgoal.

IV. SAFETY BUFFERS AND WIND BUFFERS

The shapes of safety buffers and wind buffers depend on
the physical characteristics, the velocity, and the heading of
drones. Safety buffers should generally be large enough for
emergency stops when a drone senses an imminent crash.
One way to determine the minimum stopping distance is to
measure the overshooting distances of a drone by conducting
experiments in which we issue a stop command to a drone
flying at high speed. Fig. 3 shows the overshooting distance
of our drone when we issued a stop command to stop
our drone flying at speed v and at angle θ relative to the
horizontal plane. Thus, the minimum stopping distance is
the overshooting distance. The sequence ∂i of safety buffers
can be defined using a list of cylindrical shapes, each slightly
larger than the drone. More precisely, ∂i is the union of all
cylindrical shapes along a straight-line path whose length is
the minimum stopping distance and whose direction is θ.

The wind buffer is defined in the same way, except that the
cylindrical shape is replaced by a different shape. We used a
handheld anemometer to measure the maximum wind speed
at locations around and below our drone in a stationary pose.
At each location, we rotated the anemometer to measure
the wind speed at different angles and then identified the
maximum wind speed at the location. The set of anemometer
readings constitutes an estimation of the wind field around
the drone. Fig. 4 shows the wind field of our drone at 1.5 m
above the ground. Then, we define a shape larger than all
locations with a maximum wind speed larger than a certain
threshold V min

wind. For simplicity, we define the shape as a
union of simple geometrical shapes such as cylinders and
cones. The sequence ξi of wind buffers is the union of the
sequences of this shape along a straight-line path whose
length is the minimum stopping distance and whose direction
is θ. We shall assume the wind field of a drone in non-
stationary poses can be larger than the wind field in stationary
poses. Thus, the geometrical shapes will scale with the speed
of the drone. We ignore the effect of the environment on wind
fields by assuming that drones will not fly too close to walls
or ground. For more information about wind field modeling,
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Fig. 3: The overshooting dis-
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Fig. 4: A wind field of our
drone at 1.5 m above the
ground.

please refer to [24], which analyzes the aerodynamic effects
of UAVs in the proximity of walls and ground.

V. THE RESERVATION GRID

As in AIM [5], [12], we define a reservation grid, which
subdivides the 3D workspace into a set of equally-sized cells,
each of which is a small region that drones can reserve.
The timeline is also discretized into a sequence of equal-
length time steps. A tile is a pair (c, t), where c is a cell
and t is a time step. Unlike AIM, our reservation grid has
two kinds of tile reservations. In a non-exclusive reservation,
a tile can be non-exclusively reserved by multiple drones:
after a drone non-exclusively reserves a tile, other drones
can still non-exclusively reserve the tile. In an exclusive
reservation, a tile is solely reserved by one drone; after a
drone exclusively reserves a tile, other drones cannot non-
exclusively or exclusively reserve the tile.

We utilize the reservation grid to check the compatibility
of buffer profiles quickly. Given a buffer bt at time t, let Tbt

be the set of tiles whose cells overlap with bt at t. Given a
buffer profile Bufi = (∂i, ξi), the set of all tiles overlapping
with ∂i is Tile∂i =

⋃
bt∈∂i,0≤t≤tend

{Tbt}, whereas the set of
all tiles overlapping with ξi is Tileξi =

⋃
bt∈ξi,0≤t≤tend

{Tbt}.
We call Tile∂i and Tileξi the safety buffer’s footprints and the
wind buffer’s footprints of νi, respectively. We can check
the compatibility of two buffer profiles Bufi and Bufj of
two drones νi and νj by 1) exclusively reserving all tiles in
Tile∂i and Tile∂j and 2) non-exclusively reserving all tiles in
Tileξi and Tileξj . If the reservations are successful, Bufi and
Bufj are fully compatible.3 Likewise, we can check partial
compatibility by exclusively reserving all tiles in Tile∂i and
Tile∂j . Hence, we can check the validity of a timed formation
plan by making reservations for the drones’ footprints.

VI. MODELING THE DEVIATED TRAJECTORIES

Partial compatibility is required when a drone νi has to
enter the wind field of another drone νj without collision. We
would like to let one drone enter the wind field of another
drone in a controlled way to reduce the makespan. To this

3Strictly speaking, Bufi and Bufj are approximately compatible since
two buffers do not necessarily overlap even if they overlap with the same
tile—the buffers can occupy different parts of the cell. However, these false
positives are acceptable in our applications. We can avoid some of these
false positives by reducing the size of the cells in the reservation grid.



end, we model how the drones’ trajectories deviate from their
intended trajectories under the influence of the wind field.
Note that the influence is mutual—while νi is blown away
by νj , νj could deviate from its trajectory slightly.

We trained a deep learning model to predict the trajec-
tories of multiple agents from their past trajectories. Social
LSTM [2] was first proposed to predict the future trajectories
of people based on their past positions. [31] added an
attention mechanism to Social LSTM, which captures the
relative importance of each person when navigating in the
crowd. [14] replaced LSTM with transformer networks for
trajectory forecasting. [18] is a new take on the multi-
modal prediction of pedestrian trajectories using transformer
networks and graph convolutional networks. In our experi-
ments, we trained a Social LSTM model with an attention
mechanism described in [31]. In our experiments, the training
data were generated by a simulator we developed, through
real drone data should be used for more realistic modeling.
The simulator can simulate drone trajectories when they fly
toward each other on random trajectories under the influence
of the wind fields. Although the model can only be used to
predict the trajectories of a small number of drones, we use
model averaging to combine the outputs of the model for
many random subsets of drones. Finally, we trained a model
that can take the prefixes of the trajectories of an arbitrary
number of drones and generate the predicted trajectories of
the drones by taking the wind field effects into account. The
predicted trajectories will then be used to make exclusive
reservations in the reservation grids for collision avoidance.

VII. GOAL SWAPPING IN FORMATION PLANNING

Wang and Rubenstein recently introduced a distributed
shape formation algorithm that allows a swarm of robots to
form a user-specified shape quickly [32]. This algorithm uses
a goal selector to distribute goals among agents in a swarm
for scheduling collision-free paths. Each agent uses local
communication to refine the goal assignment and control
its position in a distributed fashion. The algorithm is a
provably correct, fully distributed shape formation algorithm
that can provide collision-free and deadlock-free guarantees,
requiring the use of local communication only. Inspired
by this goal swapping approach, we devise a version of
the algorithm for centralized control settings. We improve
the goal swapping technique by incorporating wind field
modeling and the reservation grid in the algorithm.

A. Scheduling of Formation Plans

Given two motion plans πi and πj , let δi,j be the minimum
time such that the buffer profile Bufi of νi given πi and the
start time ti is partially compatible with the buffer profile
Bufj of νj given πj and tj = ti + δi,j , where δi,j ≥ 0.
In other words, if we delay the execution of πj for at least
time δi,j after the start time of νi, the buffer profiles of
both drones will be partially compatible; otherwise, they
will not be partially compatible if πj starts after πi but
before ti + δi,j . We can compute δi,j by setting ti = 0
and increasing δi,j from 0 to |Traj[πi]| − 1 until Bufi and

Algorithm 1 Find a schedule Γ that minimizes the makespan
makespan(Π,Γ) for a given formation plan Π.

1: procedure OptimizeSchedule(Π)
2: Γmin := ∅; lmin := ∞
3: for Restart = 1 to Restartmax do
4: K := 1; ρ := ⟨ki⟩1≤i≤n is a random permutation of 1..n
5: while K ≤ Kmax do
6: if δkj ,ki exists for all 1 ≤ i < j ≤ n then
7: tk1 = 0; tkj = max1≤i<j{tki+δki,kj} for 1 < j ≤ n
8: Γ := {tkj}1<j≤n; l := makespan(Π,Γ)
9: if l < lmin then Γmin := Γ; lmin := l; K := 0

10: if K > 0 then undo the last swap in Line 11 if any
11: K := K + 1; Randomly swap two elements in ρ

12: return Γmin

Bufj are partially compatible. Notice that if Bufi and Bufj
are still incompatible when δi,j ≥ |Traj[πi]|, it is impossible
that Bufi and Bufj are partially compatible and δi,j does not
exist. It can happen when the last pose of νi after executing
πi blocks νj from reaching its goal pose with πj indefinitely.
If both δj,i and δj,i do not exist (e.g., when νi and νj fly
toward each other in a straight line), the buffer profiles of νi
and νj will never be partially compatible.

The following theorem states a sufficient condition for the
validity of a timed formation plan.

Theorem 1: A timed formation plan (Π,Γ) is valid if there
exists an ordering ⟨νk1

, νk2
, . . . , νkn

⟩ of drones such that for
any 1 ≤ i < j ≤ n, δki,kj

exists and tkj
≥ tki

+ δki,kj
.

Proof: Since δki,kj
is non-negative, we have tkj

≥
tkj−1 for 1 < j ≤ n. Thus, tk1 ≤ tk2 ≤ . . . ≤ tkn , which
means the motion plans will be executed in the ordering
⟨νk1

, νk2
, . . . , νkn

⟩. Moreover, the buffer profile Bufki
of νki

given πki
and time 0 is partially compatible with the buffer

profile Bufkj
of νkj

given πkj
and time (tkj

− tki
) for 1 ≤

i < j ≤ n, since tkj − tki ≥ δki,kj . Therefore, the buffer
profiles of every pair of drones are partially compatible, and
(Π,Γ) is valid.

Theorem 1 suggests a method for finding a schedule Γ for
a given formation plan Π such that (Π,Γ) is valid: find an
ordering ⟨νk1

, νk2
, . . . , νkn

⟩ such that δkj ,ki
exists for any

1 ≤ i < j ≤ n. Then we can compute Γ =
{
tkj

}
1≤j≤n

where tkj
= max1≤i<j{tki

+ δki,kj
} and tk1

= 0 such that
the timed formation plan (Π,Γ) is valid.

In practice, it is easy to find an ordering that makes
(Π,Γ) valid since many random permutations of drones
would work. However, to find Γ that yields the minimum
makespan for a given Π, we have to enumerate all possible
permutations of drones such that δkj ,ki

exists and tend =
makespan(Π,Γ) is minimum. The time complexity of this
exhaustive search is exponential to n, making it impractical
even when n is small. Therefore, we devise a local search
algorithm to return a suboptimal solution in polynomial
time. Algorithm 1 is the pseudocode of our local search
algorithm. The algorithm is based on the famous min-conflict
heuristic, which is highly effective in many combinatorial
optimization problems [21], [27]. Initially, the algorithm
randomly generates a permutation ρ of the indexes of drones



Algorithm 2 The use of goal swapping to find Πmin and
Γmin that minimize the makespan.

1: procedure OptimizeMakespanByGoalSwapping
2: Πmin := ∅; Γmin := ∅; lmin := ∞; K := 1
3: Π is the initial formation plan.
4: while K ≤ Kmax do
5: Γ := OptimizeSchedule(Π); l := makespan(Π,Γ)
6: if Γ ̸= ∅ and l < lmin then
7: Πmin := Π; Γmin := Γ; lmin := l; K := 0

8: if K > 0 then undo the last goal swap in Line 10 if any
9: if some ν1 and ν2 satisfy the goal swapping rule then

10: Swap the goals of ν1 and ν2 and update Π accordingly
11: K := K + 1
12: return (Πmin,Γmin)

(Line 4). Then it iteratively modifies ρ by swapping the
indexes in ρ (Line 11) to see whether the minimum makespan
lmin can be reduced (Line 9). If lmin cannot be reduced
after Kmax swaps (Line 5), the local search reaches a local
minimum, and then it uses the random restart strategy to
get out of local minima (Line 3). Eventually, the algorithm
returns Γmin, the schedule that gives a suboptimal makespan.

B. Minimizing Makespans by Goal Swapping

We can further reduce the makespan by utilizing the goal
swapping technique in [32]. We define a goal swapping rule,
which takes ν1, ν2, Π, and Γ as inputs, and check whether
the makespan of the two drones (ignoring all other drones)
can be reduced if they swap their goals. More precisely, let
ρinit1 and ρinit2 be the initial poses of ν1 and ν2, and let ρgoal1

and ρgoal2 be the current goal poses of ν1 and ν2, respectively.
Let π1 and π2 be the motion plans for ν1 and ν2 in Π to
move from ρinit1 and ρinit2 to ρgoal1 and ρgoal2 , respectively. Let
t1 and t2 be the start times for ν1 and ν2 in Γ, respectively.
Suppose the goal of ν1 changes to ρgoal2 and the goal of ν2
changes to ρgoal1 . Then, we compute the new motion plans π′

1

and π′
2 and the new start times t′1 and t′2 such that π′

1 does
not collide with π′

2. If max(t′1+ |Traj[π′
1]|, t′2+ |Traj[π′

2]|) <
max(t1+ |Traj[π1]|, t2+ |Traj[π2]|), we say ν1 and ν2 satisfy
the goal swapping rule for swapping the goals of ν1 and ν2.

The goal swapping rule can make wrong decisions if it
ignores the wind field effect. For example, suppose two
drones fly horizontally in parallel in the opposite direction
at the same start time, as shown in Fig. 5. If D1 is
slightly smaller than D2, the drones do not swap their goals
according to the goal swapping rule. However, if the wind
field of Drone A pushes Drone B downward, Drone B will
fly in the blue trajectory, which is much longer than D1,
the length of the dotted red trajectory. Then, swapping the
goals can reduce the makespan of these two drones since this
eliminates the wind field effect. This simple example shows
that the goal swapping rule could make wrong decisions if
it does not consider the deviated trajectories. In general, the
same mistake occurs in more complicated scenarios since
the trajectories’ lengths are underestimated when the wind
field effect is ignored. Therefore, it is necessary to predict
the deviated trajectories when using the goal swapping rule.

Goal Pose 1Initial Pose 1

Goal Pose 2 Initial Pose 2

Drone B

Drone A

D2

D1

Fig. 5: A wrong decision made by the goal swapping rule.

Algorithm 2 utilizes the goal swapping rule to minimize
the makespan by local search. Initially, all drones fly toward
their goal poses according to the initial formation plan Π
(Line 3). The algorithm randomly chooses a pair of drones
that satisfies the goal swapping rule (Line 9) and then swaps
their goals and updates Π accordingly (Line 10). After that,
it calls OptimizeSchedule to find a schedule Γ for Π and
compute the makespan (Line 5). If the makespan is reduced,
the algorithm keeps Π and Γ as the current best solution
(Line 7); otherwise, the goal swap is reverted (Line 8). The
above process repeats Kmax times, and then the algorithm
returns the best solution.

VIII. EXPERIMENTAL EVALUATION
We conducted two experiments to evaluate our algorithms.

In Experiment 1, we implemented a drone swarm simulator
to compare our algorithm with three baseline algorithms: 1)
the intersection management (IM) approach in which drones
stop and wait if another drone blocks its way [32], 2) the
buffered Voronoi Cell (BVC) method [40] and 3) the artificial
potential field (APF) methods [28]. In Experiment 2, we re-
peated Experiment 1 with a team of small-sized quadcopters
called Crazyflie [25] in the real world.
Experimental Setup Experiment 1 was based on a drone
simulator we developed for aerial swarm research. The
simulator was implemented in C++23 with the OpenGL
and SDL2 libraries. We implemented a simple drone dy-
namics model in which the drone can move freely in any
direction subject to some speed and acceleration constraints.
We retained the simulation’s realism by tuning the model’s
parameters based on the performance of a real drone we built
in our lab. The wind model was based on the wind speed
measurements around the real drone using an anemometer as
described in Sec. IV. The simulator can instantiate n drones
and take an initial formation Finit and a goal formation Fgoal

as inputs. All poses in both Finit and Fgoal cannot intersect
with each other. The simulator controlled the simulated
drones by a controller that acts according to a timed forma-
tion plan generated by our formation planning algorithm or a
baseline controller such as those in the APF methods. When
all drones arrive at the goal poses, the simulator will report
the total execution time of the simulation as the makespan.

We implemented Algorithm 1 and Algorithm 2 as well
as the three baseline algorithms in the simulator. We im-
plemented the intersection management approach in which
a drone will move toward its goal pose in a straight line,



but it will stop when a collision is imminent. A stopped
drone will resume its flight when its path is clear. We
implemented the buffered Voronoi Cell method based on the
reference implementation in the Crazyflie system [25], which
has implemented the method. We also implemented the APF
method in which a drone will move according to a potential
field function derived from the potential field function of
its goal pose minus a weighted sum of the potential field
functions of other drones. A drone will move towards its
goal pose by following the gradient of the potential field.

To highlight the effect of allowing drones to enter wind
fields (EWF) and goal swapping (GW), we implemented
four versions of our algorithm for the four combinations
of these features. To forbid drones from entering any wind
fields, we replace the partial compatibility condition with
the full compatibility condition when checking the validity
of timed formation plans using the reservation grid described
in Sec. III and Sec. V. To turn off goal swapping, we simply
do not use Algorithm 2 to find the timed formation plans;
instead, we use Algorithm 1 to find a schedule Γ for Π.

While our neural network is similar to the one in [31], we
have to create a custom dataset of trajectories and modify
a few parameters to make it suitable for inferring drone
trajectories. We used a discretization of our arena of 5m ×
5m× 3m motion capture space into a grid corresponding to
500×500×300 volumetric data points. Position trajectories
from the simulator were sampled at 0.01s intervals, which
also served as the basis for defining a unit sequence length for
the neural network. 500 trajectories with sequence lengths of
5s and 10 agents in constant velocity motion were generated
with simulated wake interaction, which was preprocessed
based on the discretization parameters and normalization.
During inference, the first 0.5s of the straight-line trajectory
sequence was used as the observed sequence, assuming that
all drones began their schedule and were in motion.

In Experiment 2, we used a drone swarm system called
Crazyflie 2.1 nano quadcopters to evaluate our algorithms
in the real world. We used six Crazyflie drones, each of
which was equipped with infrared motion tracking markers
such that its position could be tracked by an Optitrack
motion capture system with ten infrared cameras that of-
fered a sub-millimeter accuracy. We ran our algorithms on
a desktop computer that remotely controls the drones via
a 2.4 GHz communication channel. The 168MHz ARM
microcontrollers on the drones will control the drones.
Results Fig. 6 shows the results of Experiment 1. As can be
seen, our algorithms always have lower average makespans
when compared with the IM, BVC, and APF approaches, re-
gardless of the number of drones. These baseline algorithms
are reactive planners and do not conduct long-term planning.
Hence, our planning approach clearly outperforms them in
terms of minimizing the makespans.

Among the four versions of our algorithm, the version
that allows drones to enter wind fields with goal swapping
is the best. In fact, it is better than the other versions in two
different ways. First, when compared with the versions in
which drones were forbidden to enter any wind fields, the

Fig. 6: Average makespan vs. the number of drones.

Fig. 7: The average makespans in the real drone systems.

best version outperformed them by a large margin. Clearly,
it is beneficial to allow drones to enter the wind fields of
other drones such that there are more ways to minimize
the makespan. Second, when compared with the versions
without goal swapping, the best version also outperformed
them. In fact, goal swapping is better with and without the
permission of entering wind fields. Therefore, goal swapping
is indeed helpful in reducing the makespans. Moreover, goal
swapping can yield a much larger performance improvement
than allowing drones to enter wind fields.

Fig. 7 shows that the average makespans in Experiment 2
with the real drones are smaller than that in Experiment 1
due to the limited size of the room in which we conducted
the experiment. Nonetheless, our algorithm outperformed
the baseline algorithms in Experiment 2. Among the four
versions of our algorithm, the version that allows drones to
enter wind fields with goal swapping was still the best.

IX. SUMMARY AND FUTURE WORK

We have presented a new grid-based formation planning
algorithm for moving a fleet of drones in formation from one
location to another. Our approach utilizes a reservation grid
for collision avoidance with respect to drones’ safety buffers
and wind fields. Wind buffers can simplify the trajectory
optimization process by ignoring the irregularity of the shape
of the wind fields. Our planning algorithm is a local search
algorithm that aims to find a schedule of the start times of the
motion plans in a formation plan with goal swapping. Our
experiments with real and simulated drones show that if we
allow drones to fly into the wind field of another drone, we
could further reduce the makespan. One possible future work
is to use reinforcement learning to find an optimal policy for
formation planning with respect to wind fields in real-world
applications such as interactive drone light shows [23].
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